

Dietary bile acid supplementation alters the gut transcriptome and metagenome and contributes to herbivorous diet adaptation in juvenile allo diploid hybrid fish

Zexun Zhou ^{a,1}, Ye Yuan ^{a,1}, YunYun Liu ^{a,1}, Shandong Chen ^a, Yongchun Li ^a, Yan Miao ^a, Shi Wang ^a, Zhongyuan Shen ^{a,b}, Lei Zeng ^a, Li Ren ^a, Chang Wu ^{a,b}, Qizhi Liu ^a, Qinbo Qin ^{a,b}, Wuhui Li ^{a,b,*}, Shaojun Liu ^{a,b,*}

^a Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, China

^b Hunan Yuelu Mountain Science and Technology Co.Ltd. Amid at Aquatic Breeding, China

ARTICLE INFO

Keywords:

Allodiploid hybrid fish
Herbivorous diet adaptation
Bile acid
Transcriptome
Metagenome

ABSTRACT

The aim of this study was to explore the effects of dietary bile acids (BAs) supplementation on herbivorous diet adaptation in allodiploid hybrid fish derived from blunt snout bream (♀) \times topmouth culter (♂). Three experimental diets were formulated: a commercial basal diet (CG group), a basal diet supplement with duckweed (H group), and a basal diet supplemented with duckweed and 600 mg kg^{-1} BA (T group). After 56 days of feeding, the growth parameters increased, and greater intestinal cellulase activity was detected in the T group. Moreover, the T group fish presented a longer and denser small intestinal villi. In general, the characteristics of the H group were intermediate between those of the other two groups (T > H > CG). Compared with CG group fish, 711 specific differentially expressed genes (DEGs) were identified in the intestine of T group fish. The upregulated DEGs were primarily enriched in MAPK signaling pathway, protein digestion and absorption, and mTOR signaling pathway; the downregulated DEGs were predominantly enriched in steroid hormone biosynthesis, fatty acid metabolism and primary bile acid biosynthesis. Besides, several upregulated genes, such as *jak*, *irs*, *egfr*, *prss*, and *cpa* which related to cell proliferation and differentiation, digestion, and metabolism, are associated with the changes in intestinal histomorphology. These changes could promote the intestinal adaptation of an herbivorous diet. The metagenome sequencing results revealed that exogenous BAs significantly changed the structure of the gut microbiota; decreased the abundance of potentially pathogenic bacteria or fungi such as *Proteobacteria*, *Mucoromycota*, and *Pseudomonas*; and increased the abundance of probiotics such as the cellulose-producing bacteria *Micromonospora*. In addition, functional analysis revealed that the abundance of some enzyme families related to cellulose degradation was significantly greater in the T group. These findings suggested that exogenous BAs influences host intestinal gene expression and the structure of the gut microbiota via the gut microbiota-bile acid pathway, which in turn contributes to herbivorous diet adaptation in juvenile allodiploid hybrid fish.

1. Introduction

Aquatic products provide one-fifth of the high-quality animal protein for humans; however, the feed source is one of the most important factors in determining the yield (Boyd et al., 2022). The Grass carp (*Ctenopharyngodon idellus*) and blunt snout bream (*Megalobrama amblycephala*) are important commercial fish in China. As herbivorous fish, they are increasingly emphasized for their food, which is mainly derived from plants in nature. Interestingly, several studies have demonstrated that genes encoding cellulose-digesting enzymes are not identified in the genomes of grass carp and blunt snout bream, and that the ability of these to digest plant food relies mainly on the microbiome

(*amblycephala*) are important commercial fish in China. As herbivorous fish, they are increasingly emphasized for their food, which is mainly derived from plants in nature. Interestingly, several studies have demonstrated that genes encoding cellulose-digesting enzymes are not identified in the genomes of grass carp and blunt snout bream, and that the ability of these to digest plant food relies mainly on the microbiome

* Corresponding author.

E-mail addresses: liwuhui11@163.com (W. Li), lsj@hunnu.edu.cn (S. Liu).

¹ These authors have contributed equally to this work.

in their intestine (Liu et al., 2017; Tran et al., 2017; Wang et al., 2015; Wei et al., 2018). The cellulase-producing microbes, such as *Clostridium*, *Citrobacter*, *Enterobacter*, *Aeromonas*, and *Actinomyces*, are observed dominant microbiota in the gut of grass carp and blunt snout bream after herbivorous diet adaptation (Tran et al., 2017; Li et al., 2023). Obviously, the gut microbiome plays an important role in diet digestion, in turn, the fish (host) also affected their intestinal microbes enrichment. However, little research focuses on the host-microbes interactions that contribute to herbivorous diet transition and adaptation during the early life cycle of fish.

BAs are the amphoteric compounds synthesized from cholesterol in the liver, which play significant roles in the absorption of lipids and maintenance of cholesterol balance (Hofmann and Hagey, 2008). BAs in the gastrointestinal tract interact with dietary fiber to alter the bioavailability and bioaccessibility of secondary metabolites (Singh et al., 2019). Meanwhile, they have also been identified as potent signaling molecules (Kiryama and Nochi, 2019). This includes the nuclear receptor FXR, which upon binding with BAs, regulates a variety of metabolic processes such as glucose, BAs, and lipid metabolism (Wen et al., 2021). Furthermore, there is an intensive interaction between the gut microbiota and bile acids metabolism (Wahlström et al., 2016). BAs exert a direct influence on the gut microbial landscape, fostering the proliferation of bile acid-metabolizing bacteria and suppressing the growth of bile-sensitive bacterial populations (Guo et al., 2022). Additionally, it can indirectly regulate the microbiota through the activation of FXR (Wahlström et al., 2016). In turn, the gut microbiota can regulate the bile acid pools through the production of secondary BAs, which contribute to the regulation of bile acid-dependent digestive, absorptive, and signaling functions, as well as other physiological processes (Guo et al., 2022). This bidirectional relationship between BAs and the gut microbiota exemplifies the intricate interdependence of the gut microbiota-bile acid-host axis (Winston and Theriot, 2019).

The hybrid fish, derived from blunt snout bream (BSB, herbivory, ♀) and topmouth culter (*Culter alburnus*, TC, carnivory, ♂) is an allotetraploid fish and exhibits bisexually fertile (Xiao et al., 2014). Interestingly, previous studies have demonstrated that the gut microbiota communities and gastrointestinal tracts of the hybrid fish are more biased toward herbivores (Li et al., 2018). In addition, after herbivorous diet adaptation, the hybrid fish gut presented decreased expression levels of *fxr* and increased expression levels of *cyp7a1*, and steroid biosynthesis and the mevalonate pathway were activated (Li et al., 2021b), similar to the changes in gene expression after herbivorous diet adaptation in grass carp (Wang et al., 2015). However, to date, little research has been conducted on the diet adaptation of newly formed hybrid fishes. In this study, to better understand the effects of dietary BA supplementation on herbivorous diet adaptation, intestinal histomorphology, digestive enzyme activities, intestinal transcriptome, and metagenome in different feed groups were comparatively analyzed. The results may help elucidate the function of the gut microbiota-bile acid pathway in herbivorous diet adaptation, which provides a theoretical basis for the efficient utilization of plant proteins and ecologically healthy aquaculture in farmed fish.

2. Materials and methods

2.1. Ethics statement

All the experimental procedures were conducted following the standards and ethical guidelines established by the Animal Ethical Review Committee of Hunan Normal University, Changsha, China.

2.2. Preparation of experimental diets

In this study, three different feed groups were set up, namely, the control group (CG), experimental Group 1 (H group), and experimental Group 2 (T group), which were fed a basal diet, a basal diet and

duckweed, and a basal diet supplemented with 600 mg kg⁻¹ bile acid and duckweed, respectively. After collection, the duckweed was cleaned with ultrapure water to remove invertebrates and broken up before being fed. The main ingredients of the basal diet were fish meal, soybean meal, rapeseed meal, rice bran, wheat meal, fish oil, mineral mixture and vitamin premix. The basal diet formulation and analyzed chemical compositions are shown in Table S1. The BA used in this study was cholic acid (Sangon Biotech, Shanghai, China), and the dosage of the BAs was selected as previously described (Yao et al., 2021). After all ingredients were manually mixed, the dry floating pellets of 0.5 mm diameter were made using a twin-screwed extruder (HQ, Zhaoqing, China). The diets were dried at 25 °C for 24 h and stored at -20 °C until use.

2.3. Experimental fish, feeding, and sampling

The fertilized embryos, larvae, and juveniles from hybridizing female BSB and male TC were all reared at Hunan Normal University, China.

A total of 450 healthy juvenile fish (40 days old; initial body weight, IBW = 0.50 ± 0.05 g) were randomly selected and distributed to nine identical tanks ($n = 50$, 2 m × 1 m × 1 m), with three replicates per feed group, and one-third of the water was replaced daily. Before the feeding experiment, the fish were fasted for 24 h. The fish in each tank were artificially fed twice a day (9:30 and 16:30) to visual satiation for 8 weeks. In addition, the H and T groups were fed an adequate number of crushed duckweed. Throughout the experimental period, a continuous aeration system was employed in each tank, the pH was maintained at 7.5–8.0, the dissolved oxygen (DO) concentration was maintained above 5.0 mg L⁻¹, and the water temperature ranged from 24.0 to 28.0 °C, the total ammonia nitrogen (TAN) concentration was less than 0.2 mg L⁻¹, and the natural photoperiods were maintained during the feeding experiment.

At about 24 h after the last feeding, each group fish was anesthetized with 50 mg L⁻¹ MS-222, and the final body weight (FBW) and length were measured. Moreover, the weight gain rate (WGR), average final length (AFL), and specific growth rate (SGR) were calculated. Then, ten fish from each group were randomly selected and sacrificed, and a piece of anterior intestine from each group fish was clipped and fixed in a 4% paraformaldehyde solution for histological analysis. The remaining intestines were quickly stripped. Subsequently, the intestinal mucosa layers and the contents were carefully scraped and collected for metagenome. The intestines were washed in 1× PBS and collected for transcriptome sequencing. All the samples were immediately frozen in liquid nitrogen after collection and transferred to -80 °C for storage until analysis.

2.4. Histological analysis of the intestinal tract

Histological analysis was performed as described in previous studies (Li et al., 2021b). The section samples were observed and photographed via Leica DM2500 (Leica, Solms, Germany). The thickness of the flat knitting machine (CM), the thickness of the longitudinal muscle (LM), the width of the small intestine villi (VW), the height of the small intestine villi (VH), and the number of goblet cells (GCs) and small intestine villi were measured, counted, and calculated.

2.5. Measurement of intestinal digestive enzyme activity

The intestinal contents from each feed group ($n = 5$) were used to assay indicators of cellulase, α-amylase, protease, and lipase activities. The experiments were conducted in accordance with the standard experimental protocol of commercial kits (Nanjing Jiancheng Bioengineering Institute, China). All assays were repeated three times.

2.6. Transcriptome sequencing and analysis

The total RNA of the intestinal samples ($n = 9$) was extracted using TRIzol reagent (Invitrogen, USA) in a standard experimental protocol. After the concentration and integrity of the RNA were tested and qualified, the library construction was conducted via the Hieff NGS® Ultima Dual-mode mRNA Library Prep Kit for Illumina® (No.13533ES96). Subsequently, the library was sequenced using the PE 150 sequencing platform (Illumina NovaSeq 6000 platform). The raw reads were filtered via fastp (version 0.23.0) to obtain clean reads. A total of 54.49 Gb of clean data were obtained. The complete clean data were uploaded to the NCBI Sequence Read Archive (SRA) database (accession number PRJNA679638). As previously described (Li et al., 2021b; Ren et al., 2019), after the clean data were mapped onto the reference genome (genome assemblies ASM986986v1 and ASM986977v1) via HISAT2 (version 2.0.4), the number of mapped reads in each gene was calculated with some in-house Perl scripts. The transcripts were assembled via StringTie (Version 1.3.4d) (Kim et al., 2015; Pertea et al., 2015). Quantification of gene expression levels was conducted via the FPKM method (Mortazavi et al., 2008). The differential expression genes (DEGs) were identified via the DESeq2(version 2.13) with a screening threshold of p -values <0.05 and absolute Fold Change ≥ 2 . After gene function annotation, function enrichment was analyzed on the platform BMKCloud (www.biocloud.net) and p -value <0.05 was considered to be significant. The co-expression analysis was performed on the platform OmicShare (www.omicshare.com).

2.7. Validation of transcriptome via quantitative real-time PCR

Eight DEGs were selected for quantitative real-time PCR (qPCR) and the primers used are presented in Table S2. The relative expression of genes was calculated using β -actin as an internal reference gene via the $2^{-\Delta\Delta Ct}$ method.

2.8. Gut microbiota metagenome sequencing and data analysis

Total DNA was extracted using the CTAB method in a standard experimental protocol. After the concentration and integrity of the DNA were tested and qualified, the library construction was conducted via the VAHTS® Universal Plus DNA Library Pren Kit for Illumina (ND617-C3-02). Subsequently, the library was sequenced using the PE 150 sequencing platform (Illumina NovaSeq 6000 platform). The raw reads were filtered via fastp (version 0.23.0) to obtain clean reads, which were then subjected to further processing to remove any contamination from the host genome via the bowtie2 (version 2.2.4). Metagenome assembly was performed via the MEGAHIT (version 1.1.2) software (Li et al., 2015). The assembly results were evaluated via the software QUAST (version 2.3). Gene identification was subsequently conducted via MetaGeneMark (version 3.26) software (Zhu et al., 2010) with the default parameters. The redundant genes were removed via the MMseqs2 (version 12-113e3) software in order to construct a catalogue of non-redundant genes and the parameter thresholds were set at 95 % similarity and 90 % coverage (Steinegger and Söding, 2017).

The non-redundant genes were aligned to several commonly used databases (including Nr, GO, KEGG, eggNOG, Pfam, and SwissProt databases) to obtain annotation information contained in the corresponding databases via Diamond (version 2.0.15) software with the threshold of e-value $<1e-5$ (Buchfink et al., 2015). In addition, the protein sequences of non-redundant genes were aligned to the dbCAN database to obtain the annotation information for the carbohydrate-activated enzymes (CAZys) via HMMER (version 3.0) software (Cantarel et al., 2009), and the abundance calculations were referred to the previous studies (Li et al., 2024).

Species composition and relative abundance information was obtained at the taxonomic level from phylum to species, based on annotations obtained from the Nr database. The differences in microbial

communities and the identification of biomarkers among the groups were analyzed via Linear discriminant analysis (LDA) and LEfSe software (Segata et al., 2011). The relationships between enzymes (including cellulases, proteases, and lipases) and dominant microbial communities (genus) were analyzed via redundancy analysis and canonical correspondence analysis (RDA/CCA analysis) (Park et al., 2021). Function enrichment analysis were conducted on the platform BMKCloud (www.biocloud.net) and p -value <0.05 was considered to be significant.

To investigate the relationship between changes in intestinal gene expression and intestinal microbiota after dietary supplementation BAs and enhanced herbivory adaptations in hybrid fish, an integration analysis of DEGs, differential microbial communities, and shared significantly enriched KEGG pathways identified in gut transcriptomes and metagenomes was performed.

2.9. Statistical analysis

The data are presented as the mean \pm the standard error of the mean (SEM). Statistical analyses were conducted via SPSS 20.0 and the data were checked for normality and homogeneity of variance before analysis. All the data were analyzed via one-way ANOVA and Duncan's multiple comparisons. Differences were considered statistically significant when $P < 0.05$.

3. Results

3.1. Growth performance analysis

Table 1 indicated that dietary BA supplementation significantly enhanced the growth performance of juvenile hybrid fish ($P < 0.05$). The parameters of FBW, WGR, SGR, and AFL of the T group were significantly increased in comparison to those of the CG and H groups ($P < 0.05$).

3.2. Intestinal histomorphology analysis

The intestinal histomorphology is presented in Fig. S1 and **Table 2**. The results revealed that CM was significantly greater in the T group than in the CG and H groups ($P < 0.05$); LM and VH both presented a trend of T > H > CG, and there was a significant difference between the CG and T groups ($P < 0.05$). The number of GCs was T > H > CG, and there was a significant difference among all the groups ($P < 0.05$). No significant difference was observed in VW among the three groups of fish ($P > 0.05$).

3.3. Intestinal digestive enzyme activity analysis

The results of the enzyme activity analysis are presented in Fig. 1.

Table 1
The effects of dietary BA supplementation on growth performance in juvenile hybrid fish¹.

Item	Groups		
	CG	H	T
IBW (g) ²	0.50 \pm 0.05	0.50 \pm 0.05	0.50 \pm 0.05
FBW (g) ²	1.91 \pm 0.20 ^b	2.06 \pm 0.18 ^b	2.91 \pm 0.29 ^a
WGR (%) ³	282.86 \pm 40.65 ^b	312.86 \pm 35.61 ^b	481.33 \pm 58.29 ^a
SGR (%/day) ⁴	2.39 \pm 0.18 ^b	2.53 \pm 0.16 ^b	3.14 \pm 0.17 ^a
AFL (cm) ⁵	6.57 \pm 0.41 ^b	6.88 \pm 0.21 ^b	7.71 \pm 0.41 ^a

¹ Values were reported as mean \pm SEM ($n = 10$). ^{a, b} Values with different letters within the same row are significantly different ($P < 0.05$).

² IBW (g) is initial body weight, and FBW (g) was final body weight.

³ WGR (weight gain rate, %) = (FBW - IBW) / IBW \times 100 %.

⁴ SGR (specific growth rate, %/day) = [\ln (FBW) - \ln (IBW)] / days \times 100 %.

⁵ AFL (cm) was average final length.

Table 2

The effects of dietary BA supplementation on the intestinal histomorphology in juvenile hybrid fish¹.

Item	Groups		
	CG	H	T
CM thickness (μm) ²	47.26 ± 1.55 ^b	47.01 ± 0.89 ^b	52.50 ± 1.03 ^a
LM thickness (μm) ²	16.61 ± 1.92 ^b	18.13 ± 0.78 ^{ab}	19.39 ± 0.57 ^a
VH (μm) ²	279.34 ± 10.07 ^b	282.48 ± 5.60 ^{ab}	299.31 ± 9.00 ^a
VW (μm) ²	68.83 ± 2.73	68.58 ± 0.94	68.18 ± 2.27
small intestine villi number	20.03 ± 0.96 ^b	22.33 ± 1.53 ^{ab}	23.33 ± 2.08 ^a
The number of GC ²	121.00 ± 7.94 ^c	141.67 ± 7.57 ^b	157.67 ± 3.51 ^a

¹ Values were reported as mean ± SEM ($n = 3$). ^{a, b, c} Values with different letters within the same row are significantly different ($P < 0.05$).

² CM: flat knitting machine; LM: longitudinal muscle; VH: the height of small intestine villi; VW: the width of small intestine villi; GC: goblet cell.

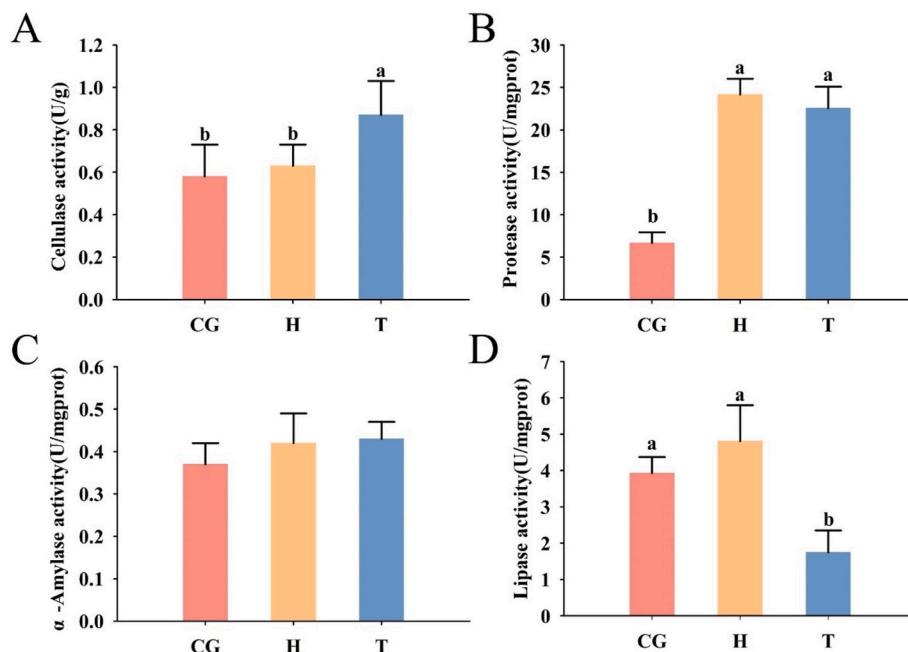
The results showed that significantly higher intestinal cellulase activity and significantly lower lipase activity in the T group in comparison to the CG and H groups ($P < 0.05$), and no difference was detected between the CG and H groups ($P > 0.05$). The intestinal protease activity was significantly higher in the T and H groups than in the CG ($P < 0.05$). Although the intestinal α -amylase activity among the groups tended to decrease in the order of T > H > CG, no significant difference was observed between the groups of fish ($P > 0.05$).

3.4. DEG identification and functional enrichment

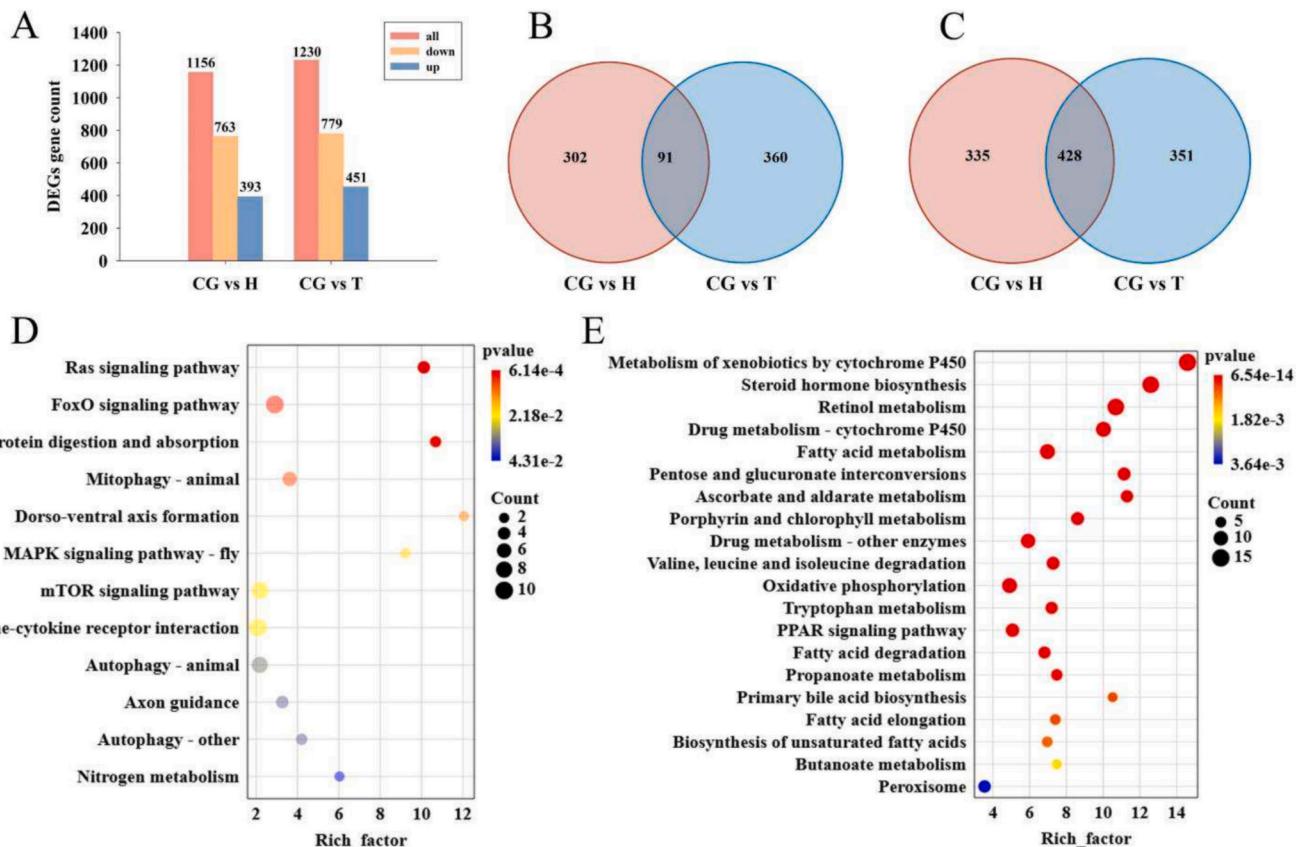
A total of 54.49 Gb clean data were obtained (Table S3). A total of 1156 DEGs were identified in the H group compared with the CG group, including 763 upregulated and 393 downregulated genes. Similarly, 1230 DEGs were identified in the T group compared with the CG group, comprising 779 upregulated and 451 downregulated genes (Fig. 2A). Table 3 shows the top 10 up-regulated and top 10 down-regulated DEGs in H compared to CG, and the top 10 up-regulated and top 10 down-regulated DEGs in T compared to CG. The specific DEGs between CG and T were identified, and there were detected 360 upregulated and 351

downregulated genes (Fig. 2B and C).

GO function enrichment analysis revealed that the most upregulated DEGs were related to cytoplasm, binding, protein binding, extracellular region, and response to external stimulus. In contrast, the most downregulated DEGs were enriched in obsolete cytoplasmic part, catalytic activity, small molecule metabolic process, oxidoreductase activity, and oxidation-reduction process (Table S4 and Fig. S2). KEGG enrichment analysis revealed that the upregulated DEGs were enriched mainly in MAPK signaling pathway, protein digestion and absorption and mTOR signaling pathway (Fig. 2D), whereas the downregulated DEGs were enriched predominantly in steroid hormone biosynthesis, fatty acid metabolism and primary bile acid biosynthesis (Fig. 2E).


The expression patterns of all the co-expressed genes could be divided into 8 patterns, among which three trends were significant ($P < 0.05$), and 1302, 1038 and 628 genes were enriched, respectively (Fig. 3A). Interestingly, we identified several important genes that were specifically expressed in the T group, such as *irs*, *jak*, *egfr*, *prss*, and *cpa*, whose expression was upregulated, and *srebp1*, *elovl6*, *cpt1*, *apoe*, *cyp7a1*, *cyp8b1*, *cyp27a1*, and *hmgr*, whose expression was downregulated (Supplementary material 1).

3.5. qPCR validation


To validate the RNA-seq data, we selected 8 DEGs (*elovl6*, *cyp7a1*, *srebp1*, *hmgr*, *cpa*, *irs*, *prss*, and *cpt1*) for qPCR. The qPCR results were consistent with the RNA-seq data, confirming the reliability of the RNA-seq data (Fig. 3B).

3.6. Gut microbiota

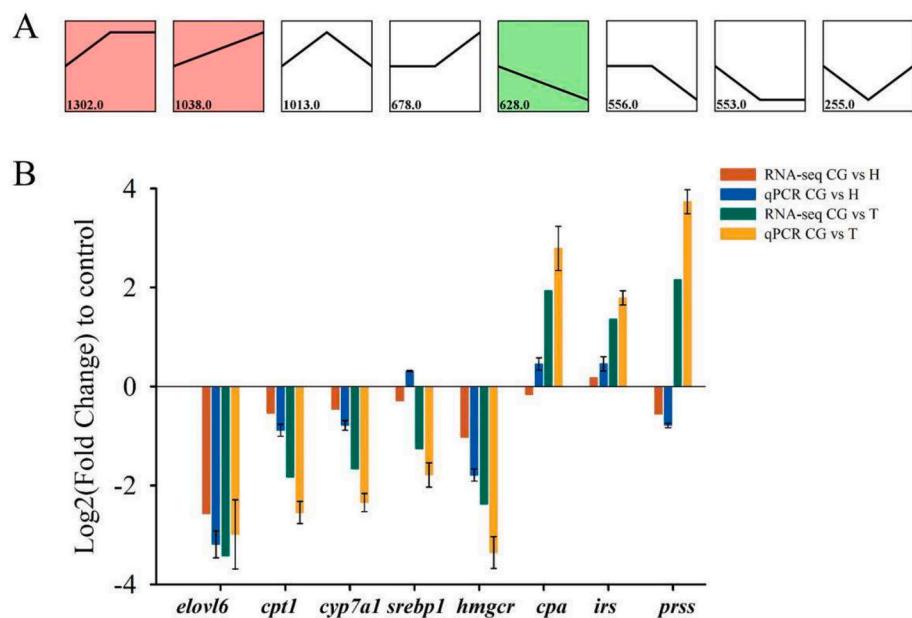
The Ace and Shannon indices tended to decrease in the order of T > H > CG (Fig. 4A and B), suggesting that dietary supplementation with duckweed and BA increased the diversity of the gut microbiota. The relative abundances of the top 10 microorganisms at the phylum and genus levels are presented in Fig. 4C and D, respectively. At the phylum level, the most dominant microorganisms were *Proteobacteria*, *Mucoromycota*, *Actinobacteria*, *Firmicutes*, and *Basidiomycota*; at the genus level, the top 5 microbiota were *Acinetobacter*, *Micromonospora*, *Rhizobacter*,

Fig. 1. The effect of dietary BA supplementation on the activity levels of cellulase, protease, α -amylase, and lipase in the intestine. (A) Cellulase activity. (B) Protease activity. (C) α -Amylase activity. (D) Lipase activity. ^{a, b} Values with different letters in the same figure are significantly different ($P < 0.05$).

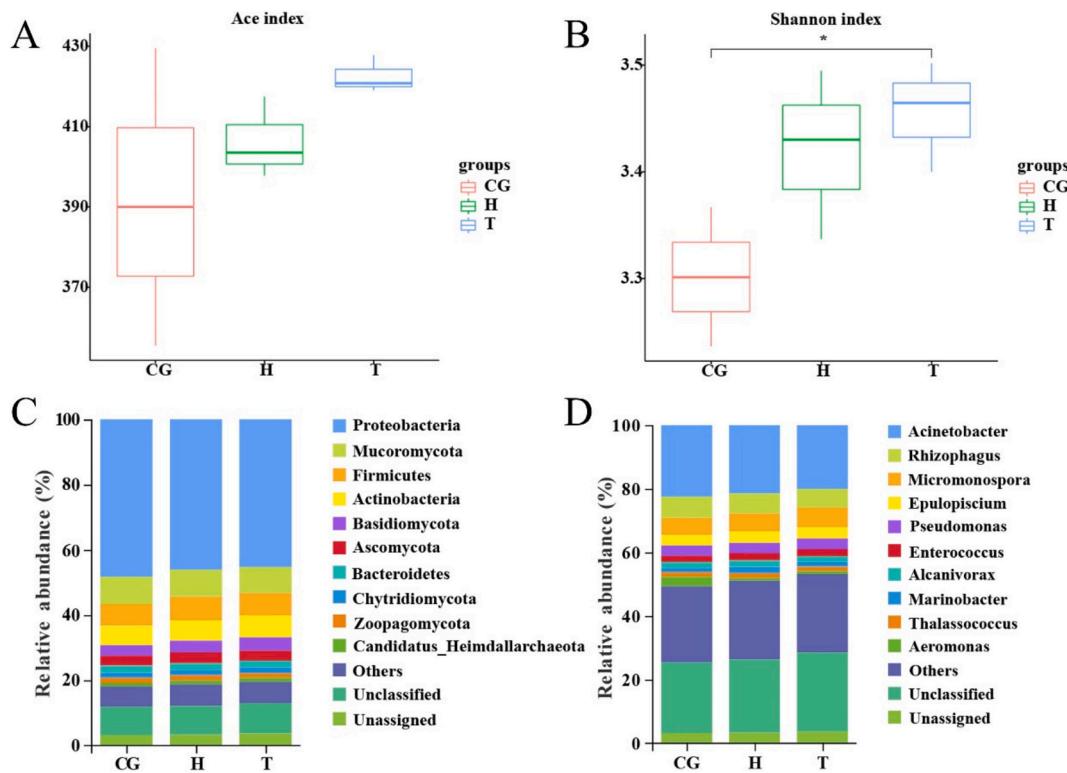
Fig. 2. Identification and KEGG enrichment analysis of DEGs in intestinal tissues of different feed groups. (A) The number of DEGs in the three groups, red represents the total DEGs, yellow represents the downregulated genes, and blue represents the upregulated genes. (B) CG vs T specific up-regulated DEGs identified by Venn diagram. (C) CG vs T specific down-regulated DEGs identified by Venn diagram. (D) TOP 20 pathway in up-regulated DEGs. (E) TOP 20 pathway in down-regulated DEGs. Rich factor is the ratio of the proportion of genes annotated to a pathway in the DEGs to the proportion of genes annotated to that pathway in all genes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
the top 10 up-regulated and down-regulated DEGs in H compared with those in CG and in compared with those in CG.

CG vs H			CG vs T		
KO	Gene	Log2(Fold Change)	KO	Gene	Log2(Fold Change)
K09228	KRAB	13.33	K06785	JAM3	14.48
K04613	V2R	8.62	K00432	gpx	9.75
K10415	DYNC1I1	7.17	K06511	CD84	9.7
K09047	CREB5	6.71	K22614	NOD3	8.03
K01020	CHST3	6.71	K22017	MUC4	7.70
K19655	SPATA7	6.68	K01370	CASP1	7.65
K08790	STK38	6.59	K08019	RAPGEF5	7.54
K22388	NAB	6.55	K05512	CCL19	7.17
K04496	CTBP	6.43	K06058	DTX	7.04
K14802	DRS2	6.31	K21918	KCTD	6.39
K12800	NLRP3	-12.38	K09228	KRAB	-9.67
K14480	APOL	-10.76	K16634	RNH1	-9.61
K10639	HEI10	-7.47	K12800	NLRP3	-9.14
K06267	HMMR	-7.24	K13907	CST	-8.75
K04257	OLFR	-7.14	K10798	PARP	-8.64
K08202	OCTN	-6.67	K20865	NLRP12	-8.36
K01365	CTSL	-6.65	K09228	KRAB	-8.22
K03985	PLAUR	-5.92	K12800	NLRP3	-8.18
K23531	CABP	-5.22	K11508	CENPP	-7.81
K01047	PLA2G	-5.13	K12004	TRIM14	-7.65


Pseudomonas, and *Epulopiscium*. The relative abundances of *Acinetobacter*, *Rhizobius*, and *Pseudomonas* gradually decreased, and the relative abundances of *Micromonospora* and *Epulopiscium* gradually

increased with the dietary supplementation with duckweed and BA.


From the phylum-to-genus level, a total of 51 specific biomarkers with a LDA score exceeding 3 were identified in the intergroup comparisons (CG vs T, H vs T, and CG vs H) (Fig. 5A-C). Compared with the CG, the H group presented 6 specific biomarkers, and the T group presented 31 specific biomarkers, indicating that BA significantly affects the species composition of the gut.

RDA/CCA analysis revealed that cellulase activity was positively correlated with the *Micromonospora* and *Pseudomonas* in the T group (Fig. 5D). Similarly, protease activity was positively correlated with the *Micromonospora*, *Enterococcus*, and *Epulopiscium* in the T and H groups. Additionally, lipase activity was positively correlated with the majority of the dominant microbial communities observed in the CG and H groups.

The analysis of the genes encoding CAZy revealed that the T group was characterized by a greater abundance of CAZy genes encoding enzymes that degrade cellulose in comparison to the CG and H groups (Table 4). The top 10 KEGG pathways and the top 30 KOs that enriched with the most functional genes with significant differences were screened (Fig. 6A and B). The significant pathways were glycerophospholipid metabolism; ubiquitin mediated proteolysis; degradation of aromatic compounds; and naphthalene degradation in the T group, whereas mismatch repair; pantothenate and CoA biosynthesis; alanine, aspartate and glutamate metabolism; and phenylalanine, tyrosine and tryptophan biosynthesis were enriched in the CG group. Overall, the H group can be considered to fall between the other groups.

Fig. 3. Result of trend analysis for all the co-expressed genes and validation of RNA-Seq using RT-PCR. (A) Eight expression patterns of the genes. (B) Validation of RNA-Seq results with qPCR.

Fig. 4. Alpha diversity indices and relative abundance of the gut microbiota in juvenile hybrid fish from different feed groups. (A) Ace index. (B) Shannon index. (C) The relative abundance of the TOP 10 gut microbiota at the phylum. (D) The relative abundance of the TOP 10 gut microbiota at the genus. CG, basal diet; H, basal diet and duckweed; T, basal diet supplemented with BA and duckweed.

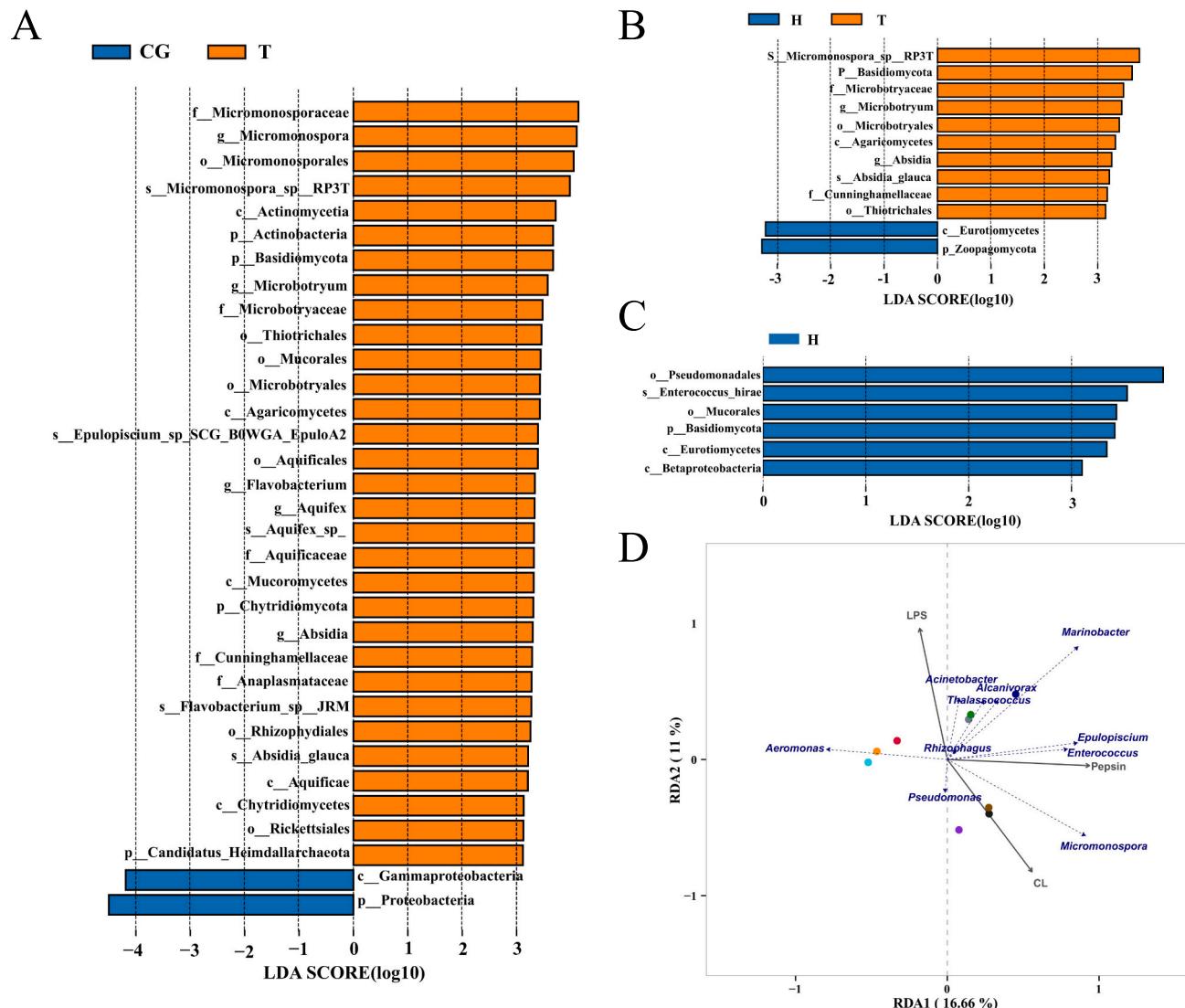

3.7. Integration analysis of gut transcriptome and metagenome

Fig. 7 showed the potential interactions between the gut microbiota and host intestinal genes, and their potential function in contributing to herbivorous diet adaptation. Modifications in the function of the gut microbiome and the expression of host intestinal genes influence the levels of enzymes, short-chain fatty acids (SCFAs), cytokines (CK), and

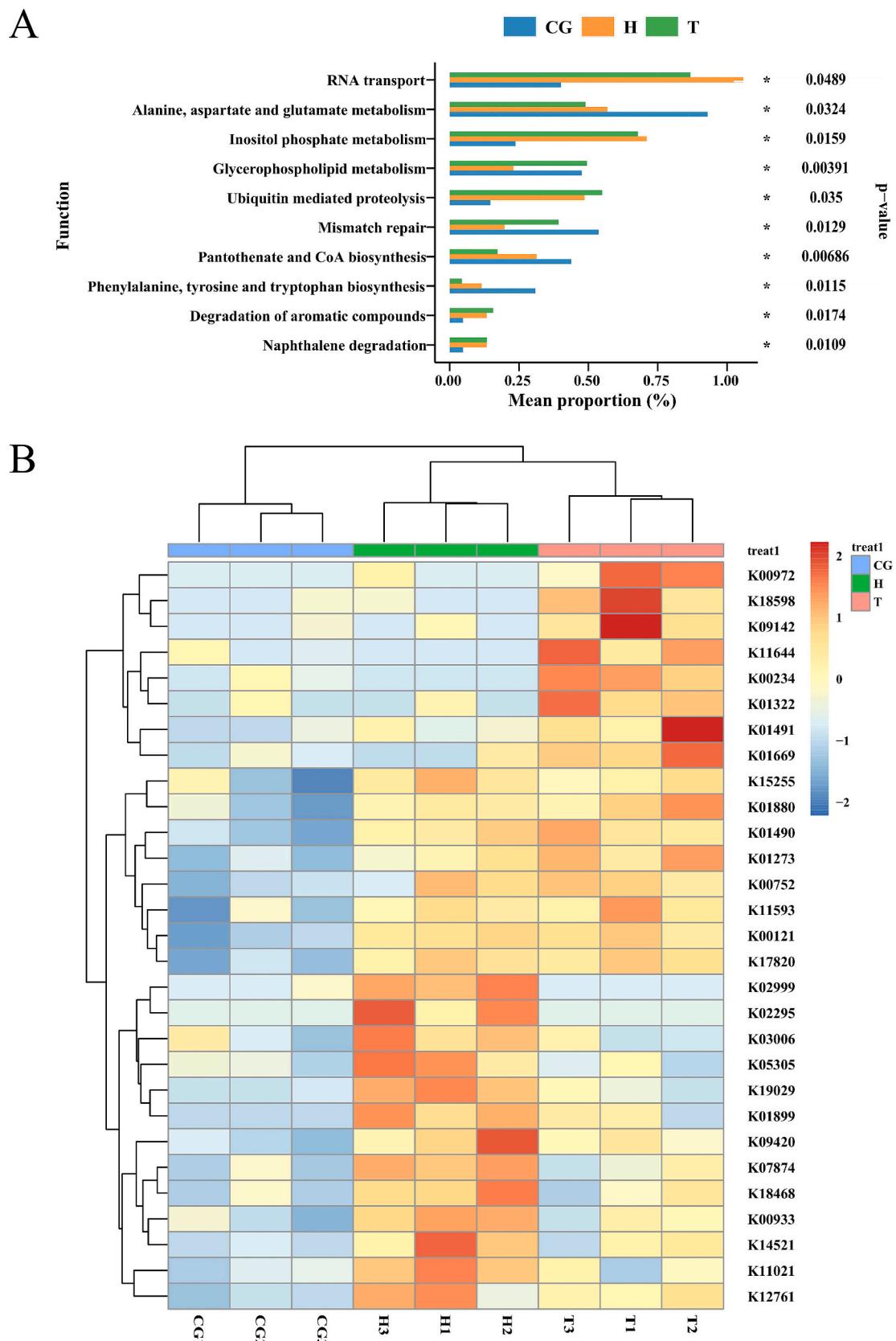
other metabolites (Fig. 7). These modifications positively affect the herbivorous diet adaptations of the fish and contribute to growth and development, and digestive and metabolism functions.

4. Discussion

In this study, dietary supplementation with 600 mg kg⁻¹ BA

Fig. 5. Identification and correlation analysis of biomarker microbes in the juvenile hybrid fish from different feed groups. Linear discriminant analysis (LDA) coupled with effect size (LEfSe) analysis of the gut microbiota between CG, H, and T. (A) CG vs T. (B) H vs T. (C) CG vs H. (D) Redundancy analysis/Canonical correspondence analysis (RDA/CCA) showing the correlation of three intestinal enzymes and dominant microbial taxa among the three groups of hybrid fish.

Table 4
Relative abundance statistics of cellulose-related CAZy families.


CAZy Family	Groups		
	CG	H	T
AA10	8.67 ± 2.51	9.00 ± 1.72	9.33 ± 2.31
GH1	106.33 ± 26.08 ^b	261.33 ± 29.50 ^b	577.00 ± 155.09 ^a
GH3	17.67 ± 2.52 ^c	37.67 ± 6.81 ^b	51.67 ± 6.43 ^a
GH5	13.67 ± 3.06	13.33 ± 5.51	21.00 ± 2.65

Values were reported as mean ± SEM (n = 3). ^{a, b, c} Values with different letters within the same row are significantly different ($P < 0.05$).

significantly increased growth performance indices (WGR, SGR, and AFL) in juvenile hybrid fish compared with those in the CG and H groups (Table 1). Similar results were obtained for largemouth bass (*Micropterus salmoides*), rice field eel (*Monopterus albus*), and grass carp (*Ctenopharyngodon idella*) (Lei et al., 2023; Peng et al., 2019; Yin et al., 2021). The growth-promoting effect of BAs has been demonstrated to correlate with increased digestive enzyme activity. However, the present study showed

that 600 mg kg⁻¹ BA had no significant effect on amylase or protease ($P > 0.05$) (Fig. 1). In tongue sole (*Cynoglossus semilaevis*) and thinlip mullet (*Liza ramada*), supplementation with appropriate levels of BAs increased amylase and protease activity, while in largemouth bass (*Micropterus salmoides*) observed the opposite results (Guo et al., 2024; Li et al., 2021a). Notably, exogenous BA significantly increased the intestinal cellulase activity but decreased the lipase activity (Fig. 1). This phenomenon was also detected in thinlip mullet (*Liza ramada*), and the changes of digestion enzymes may increase the digestibility of food (Abdel-Tawwab et al., 2023). Thus, the effects of dietary BA supplementation on intestinal digestive enzymes are related to differences in a variety of aspects, such as fish species, developmental stages, and feeding conditions (Jiao et al., 2023).

The results of the intestinal histomorphology revealed that the intestinal tract of hybrid juvenile fish thickened, the small intestinal villi lengthened, the intestinal wall muscles became more developed, and the number of goblet cells increased during the process of herbivory adaptation to adapt to changes in dietary habits (Table 2 and Fig. S1). These changes could increase intestinal peristalsis, enhance intestinal grinding and digestive capacity, and improve adequate digestion and absorption

Fig. 6. Identification and analysis of functional genes of gut microbiota in juvenile hybrid fish from different feed groups. (A) KEGG enrichment of differential functional genes. (B) TOP 30 KOs enrichment and abundance heat map of differential functional genes.

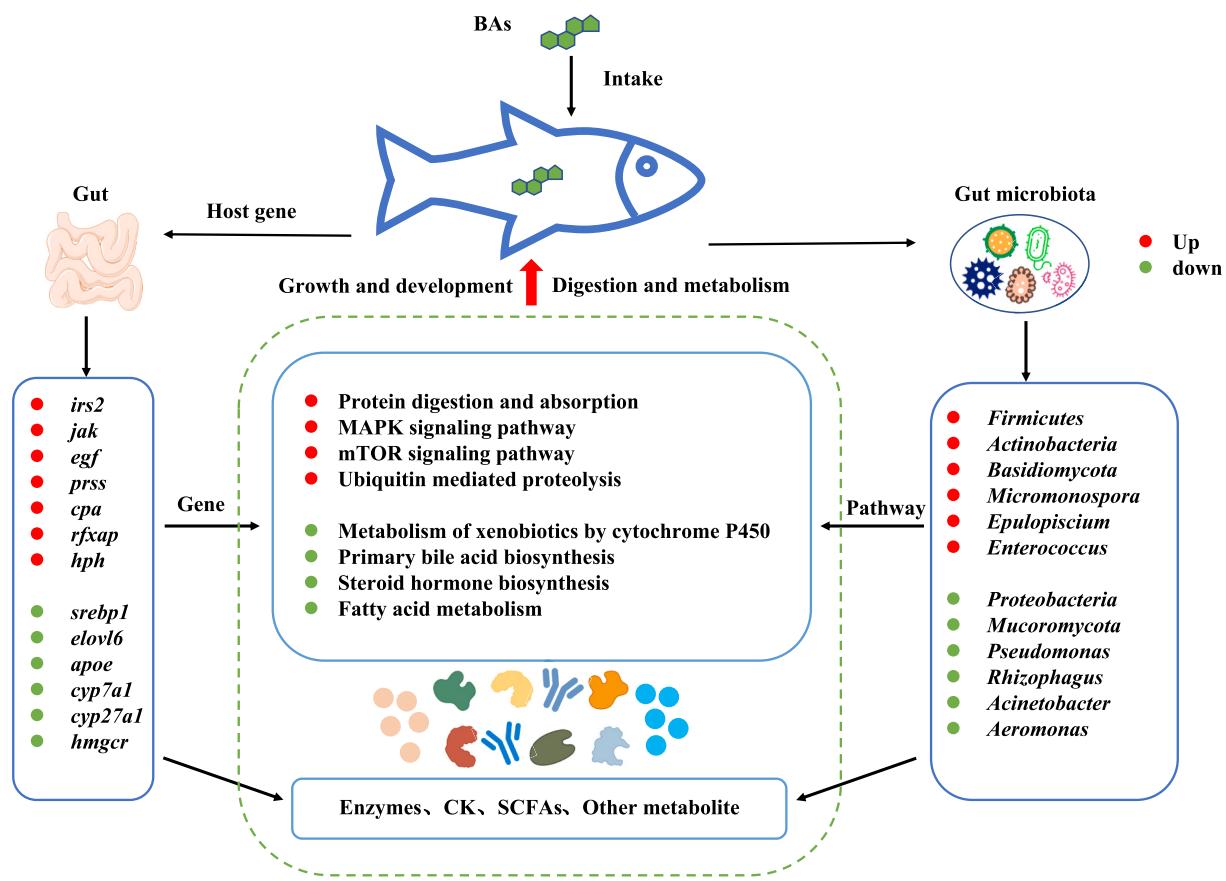


Fig. 7. Integration analysis of gut transcriptome and metagenome.

of plant food (Gustafsson and Johansson, 2022), whereas dietary BA supplementation may significantly accelerate this process.

Several genes including *irs*, *jak*, and *egfr*, which are associated with cell proliferation and growth, were significantly higher expressed in the intestinal tissue of the T group fish. In addition, the expression of the genes *prss* and *cpa*, which are associated with protein digestion and absorption, was specifically upregulated in the T group, in which PRSS plays a key role in the activation of other digestive enzyme and the hydrolysis of proteins (Dam et al., 2020). Those genes were also identified higher expression in grass carp during herbivorous diet transition (He et al., 2015). Besides, the upregulated DEGs were significantly enriched in some pathways that related to cell proliferation and growth, and nutrient digestion and absorption (Fig. 2D) (Fang and Richardson, 2005; Liu and Sabatini, 2020). The above findings indicate that dietary BA supplementation can increase the expression levels of the corresponding signaling pathways by increasing the expression of key genes, thereby promoting the growth of the gut and the digestion and absorption of nutrients in juvenile hybrid fish, thus enabling them to adapt to herbivory and contributing to the improvement of growth performance.

Recent studies have demonstrated dietary BA supplementation can reduce the expression of lipid synthesis genes and, promote lipid oxidative degradation genes (Yao et al., 2021; Zhang et al., 2022). In this study, there detected the lipid synthesis genes, *srebp1*, and *elovl6* were significantly downregulated, while the lipid oxidative degradation genes, *cpt1*, and *apoE* were also downregulated in the T group. This may result from the fish diet changing from artificial feed to duckweed, and selective gene expression occurs in the organism in response to the change in food intake. Studies in Atlantic salmon (*Salmo salar* L.) and European seabass (*Dicentrarchus labrax*) have also demonstrated that organisms may selectively express genes to regulate their metabolic pathway in response to varying dietary conditions (Król et al., 2016;

Leduc et al., 2018).

BAs, represent the primary route of cholesterol excretion from the body and directly affect the body's cholesterol and BAs metabolism (Hofmann and Hagey, 2008). Dietary BA supplementation usually downregulates the expression of the bile acid synthesis genes *cyp7a1* and/or *cyp8b1* (Yin et al., 2021; Yu et al., 2019). This study also detected dietary BA supplementation reduced the expression of *cyp8b1*, *cyp7a1*, and *hmgr*. The result suggested that exogenous BA may affect cholesterol and BAs metabolism in the hybrid fish by reducing the expression of *cyp7a1* (the rate-limiting enzyme for BA synthesis), *hmgr* (a key enzyme for cholesterol synthesis), and *cyp8b1* (regulate the ratio of CA and CDCA) (Chiang, 2009).

The gut microbiome plays an important role in the health and metabolism of fish. For example, *Pseudomonas* and *Mucoromycota* usually cause bacterial diseases; *Firmicutes*, *Micromonospora*, and *Actinobacteria* can produce beneficial secondary metabolites in fish (Barka et al., 2015; Litvak et al., 2018). In this study, dietary BA supplementation increased the diversity and abundance of the gut microbiota. Meanwhile, the abundance of potentially pathogenic bacteria such as *Mucoromycota* and *Proteobacteria* was reduced, and the abundance of cellulase-producing bacteria such as *Actinobacteria* and *Micromonospora* was increased (Fig. 4) (Chen et al., 2020; Tran et al., 2017). In addition, a number of biomarkers associated with the degradation of abundant and complex polysaccharides degradation, including *Epulopiscium*, *Micromonospora*, *Rhizophydiales* and *Chytridiomycota* (Letcher et al., 2008; Ngugi et al., 2017), were identified in the T group. This may facilitate the adaptation of the hybrid fish to herbivorous diets. Besides, dietary BA supplementation increased the abundance of certain enzyme families associated with cellulose degradation (Table 4), including GH1, GH3, GH5, and AA10 (Eijssink et al., 2019; Li et al., 2024). In addition, the functional genes significantly enriched in carbohydrate metabolism, protein hydrolysis, energy utilization, and genetic information

processing and handling, suggesting that dietary BAs affected the structure of the gut microbiota, and the dynamic changes of those microbiota may involve in adapting to the herbivorous diet and growth performance improvement (Fig. 6) (Kashinskaya et al., 2018; Parris et al., 2019).

In recent years, the gut microbiota and the host have been recognized as an interacting symbiosis (Lynch and Hsiao, 2019), and the dietary habits of the host can exert a significant influence on the composition of the gut microbiota (Kolodziejczyk et al., 2019). This means that juvenile hybrid fish undergoing herbivorous diet adaptation may alter the composition of the gut microbiota, including through enrichment of cellulase-producing flora, among others. In addition, host gut gene expression is altered to varying degrees during this process. The collective impact of these disparate elements gives rise to modifications in the function of the gut microbe-host symbiosis (Fig. 7). However, the potential mechanism of microbe-host interactions contributing to diet transition and adaptation needs further investigation.

5. Conclusion

In summary, our results showed that dietary supplementation with 600 mg kg⁻¹ BA significantly enhanced growth performance, improved intestinal digestive ability, and promoted the adaptation of allo diploid hybrid fish to plant foods. The effect of BAs on herbivorous diet adaptation in hybrid fish may be achieved by promoting the expression of genes related to intestinal growth, and digestion and absorption, and enriching with probiotics and reducing pathogenic flora, thereby altering the function of the gut microbiome. The results of this study may provide a theoretical basis for how to efficiently utilize plant proteins in farmed fish as well as for ecologically healthy farming.

CRediT authorship contribution statement

Zexun Zhou: Writing – original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. **Ye Yuan:** Visualization, Validation, Software, Investigation. **YunYun Liu:** Visualization, Validation, Software. **Shandong Chen:** Visualization, Software, Investigation. **Yongchun Li:** Visualization, Software, Investigation. **Yan Miao:** Validation, Investigation. **Shi Wang:** Visualization, Resources, Investigation. **Zhongyuan Shen:** Visualization, Data curation. **Lei Zeng:** Visualization, Data curation. **Li Ren:** Visualization, Data curation. **Chang Wu:** Writing – review & editing, Data curation. **Qizhi Liu:** Writing – review & editing, Data curation. **Qinbo Qin:** Writing – review & editing, Data curation. **Wuhui Li:** Writing – review & editing, Writing – original draft, Visualization, Supervision, Methodology, Funding acquisition, Formal analysis, Conceptualization. **Shaojun Liu:** Writing – review & editing, Methodology, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (32202906, 32373119, 32293252), the Science and Technology Innovation Program of Hunan Province (2024RC3282), the Training Program for Excellent Young Innovators of Changsha (kq2107006). Earmarked fund for Agriculture Research System of China (CARS-45), the Key Research and Development Program of Hunan Province of China (2023WK2001).

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.aquaculture.2025.742506>.

Data availability

Data will be made available on request.

References

Abdel-Tawwab, M., Abdel-Latif, H.M.R., Basuini, M.F.E., El-Nokrashy, A.M., Khaled, A.A., Kord, M., Soliman, A.A., Zaki, M., Nour, A.-E., Labib, E.M.H., Khalil, H.S., 2023. Effects of exogenous bile acids (BAs) on growth, lipid profile, digestive enzymes, and immune responses of thinlip mullet, *Liza ramada*. *Sci. Rep.* 13, 22875.

Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.-P., Clément, C., Ouhdouch, Y., van Wezel, G.P., 2015. Taxonomy, physiology, and natural products of *Actinobacteria*. *Microbiol. Mol. Biol. R* 80 (1), 1–43.

Boyd, C.E., McNevin, A.A., Davis, R.P., 2022. The contribution of fisheries and aquaculture to the global protein supply. *Food Sec.* 14, 805–827.

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. *Nat. Methods* 12, 59–60.

Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., Henrissat, B., 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. *Nucleic Acids Res.* 37, D233–D238.

Chen, S.J., Lam, M.Q., Thevarajoo, S., Abd Manan, F., Yahya, A., Chong, C.S., 2020. Genome analysis of cellulose and hemicellulose degrading *Micromonospora* sp. CP22. *3 Biotech.* 10, 160.

Chiang, J.Y.L., 2009. Bile acids: regulation of synthesis: thematic review series: bile acids. *J. Lipid Res.* 50, 1955–1966.

Dam, C.T.M., Ventura, T., Booth, M., Pirozzi, I., Salini, M., Smullen, R., Elizur, A., 2020. Intestinal transcriptome analysis highlights key differentially expressed genes involved in nutrient metabolism and digestion in yellowtail kingfish (*Seriola lalandi*) fed terrestrial animal and plant proteins. *Genes* 11, 621.

Eijsink, V.G.H., Petrovic, D., Forsberg, Z., Mekasha, S., Røhr, Å.K., Várnai, A., Bissaro, B., Vaaje-Kolstad, G., 2019. On the functional characterization of lytic polysaccharide monooxygenases (LPMOs). *Biotechnol. Biofuels* 12, 58.

Fang, J.Y., Richardson, B.C., 2005. The MAPK signalling pathways and colorectal cancer. *Lancet Oncol.* 6, 322–327.

Guo, Q., Liu, W., Zhao, L., Sui, Y., Zhao, H., Liu, Y., Mu, C., Wang, X., 2024. Fermented bile acids improved growth performance and intestinal health by altering metabolic profiles and intestinal microbiome in *Micropterus salmoides*. *Fish Shellfish Immun.* 149, 109593.

Guo, X., Okpara, E.S., Hu, W., Yan, C., Wang, Y., Liang, Q., Chiang, J.Y.L., Han, S., 2022. Interactive relationships between intestinal flora and bile acids. *Int. J. Mol. Sci.* 23, 8343.

Gustafsson, J.K., Johansson, M.E.V., 2022. The role of goblet cells and mucus in intestinal homeostasis. *Nat. Rev. Gastroenterol. Hepatol.* 19, 785–803.

He, S., Liang, X.-F., Li, L., Sun, J., Wen, Z.-Y., Cheng, X.-Y., Li, A.-X., Cai, W.-J., He, Y.-H., Wang, Y.-P., Tao, Y.-X., Yuan, X.-C., 2015. Transcriptome analysis of food habit transition from carnivory to herbivory in a typical vertebrate herbivore, grass carp *Ctenopharyngodon idella*. *BMC Genomics* 16, 15.

Hofmann, A.F., Hagey, L.R., 2008. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. *Cell. Mol. Life Sci.* 65, 2461–2483.

Jiao, F., Zhang, L., Limbu, S.M., Yin, H., Xie, Y., Yang, Z., Shang, Z., Kong, L., Rong, H., 2023. A comparison of digestive strategies for fishes with different feeding habits: digestive enzyme activities, intestinal morphology, and gut microbiota. *Ecol. Evol.* 13, e10499.

Kashinskaya, E.N., Simonov, E.P., Kabilov, M.R., Izvekova, G.I., Andree, K.B., Solovyev, M.M., 2018. Diet and other environmental factors shape the bacterial communities of fish gut in an eutrophic lake. *J. Appl. Microbiol.* 125, 1626–1641.

Kim, D., Langmead, B., Salzberg, S.L., 2015. HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods* 12, 357–360.

Kiryama, Y., Nochi, H., 2019. The biosynthesis, signalling, and neurological functions of bile acids. *Biomolecules* 9, 232.

Kolodziejczyk, A.A., Zheng, D., Elinav, E., 2019. Diet-microbiota interactions and personalized nutrition. *Nat. Rev. Microbiol.* 17, 742–753.

Król, E., Douglas, A., Tocher, D.R., Crampton, V.O., Speakman, J.R., Secombes, C.J., Martin, S.A.M., 2016. Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon. *BMC Genomics* 17, 156.

Leduc, A., Zatylny-Gaudin, C., Robert, M., Corre, E., Corguille, G.L., Castel, H., Lefevre-Scelles, A., Fournier, V., Gisbert, E., Andree, K.B., Henry, J., 2018. Dietary aquaculture by-product hydrolysates: impact on the transcriptomic response of the intestinal mucosa of European seabass (*Dicentrarchus labrax*) fed low fish meal diets. *BMC Genomics* 19, 396.

Lei, W., Li, J., Fang, P., Wu, S., Deng, Y., Luo, A., He, Z., Peng, M., 2023. Effects of dietary bile acids on growth performance, lipid deposition, and intestinal health of rice field eel (*Monopterus albus*) fed with high-lipid diets. *Aquac. Nutr.* 2023, 3321734.

Letcher, P.M., Powell, M.J., Barr, D.J.S., Churchill, P.F., Wakefield, W.S., Picard, K.T., 2008. *Rhizoplyctidales*—a new order in *Chytridiomycota*. *Mycol. Res.* 112, 1031–1048.

Li, D., Liu, C.-M., Luo, R., Sadakane, K., Lam, T.-W., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* 31, 1674–1676.

Li, M., Liang, H., Yang, H., Ding, Q., Xia, R., Chen, J., Zhou, W., Yang, Y., Zhang, Z., Yao, Y., Ran, C., Zhou, Z., 2024. Deciphering the gut microbiome of grass carp through multi-omics approach. *Microbiome* 12, 2.

Li, W., Liu, J., Tan, H., Yang, C., Ren, L., Liu, Q., Wang, S., Hu, F., Xiao, J., Zhao, R., Tao, M., Zhang, C., Qin, Q., Liu, S., 2018. Genetic effects on the gut microbiota assemblages of hybrid fish from parents with different feeding habits. *Front. Microbiol.* 9, 2972.

Li, W., Wang, S., Hu, J., Tang, C., Wu, C., Liu, J., Ren, L., Sun, C., Dong, J., Liu, S., Ye, X., 2021b. Asymmetric expression of homoeologous genes contributes to dietary adaption of an allotetraploid hybrid fish derived from *Megalobrama amblycephala* (♀) × *Culter alburnus* (♂). *BMC Genomics* 22, 362.

Li, W., Zhou, Z., Li, H., Wang, S., Ren, L., Hu, J., Liu, Q., Wu, C., Tang, C., Hu, F., Zeng, L., Zhao, R., Tao, M., Zhang, C., Qin, Q., Liu, S., 2023. Successional changes of microbial communities and host-microbiota interactions contribute to dietary adaptation in Allotetraploid hybrid fish. *Microb. Ecol.* 85, 1190–1201.

Li, Y., Wang, S., Hu, Y., Cheng, J., Cheng, X., Cheng, P., Cui, Z., 2021a. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (*Cynoglossus semilaevis*). *Fish Shellfish Immun.* 116, 52–60.

Litvak, Y., Byndloss, M.X., Bäumler, A.J., 2018. Colonocyte metabolism shapes the gut microbiota. *Science* 362, eaat9076.

Liu, G.Y., Sabatini, D.M., 2020. mTOR at the nexus of nutrition, growth, ageing and disease. *Nat. Rev. Mol. Cell Biol.* 21, 183–203.

Liu, Han, Chen, C., Gao, Z., Min, J., Gu, Y., Jian, J., Jiang, X., Cai, H., Ebersberger, I., Xu, M., Zhang, X., Chen, Jianwei, Luo, W., Chen, B., Chen, Junhui, Liu, Hong, Li, J., Lai, R., Bai, M., Wei, J., Yi, S., Wang, H., Cao, X., Zhou, X., Zhao, Y., Wei, K., Yang, R., Liu, B., Zhao, S., Fang, X., Schartl, M., Qian, X., Wang, W., 2017. The draft genome of blunt snout bream (*Megalobrama amblycephala*) reveals the development of intermuscular bone and adaptation to herbivorous diet. *Gigascience* 6, 1–13.

Lynch, J.B., Hsiao, E.Y., 2019. Microbiomes as sources of emergent host phenotypes. *Science* 365, 1405–1409.

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nat. Methods* 5, 621–628.

Nugui, D.K., Miyake, S., Cahill, M., Vinu, M., Hackmann, T.J., Blom, J., Tietbohl, M.D., Berumen, M.L., Stingl, U., 2017. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. *Proc. Natl. Acad. Sci. USA* 114, E7592–E7601.

Park, J.-G., Lee, B., Heo, T.-Y., Cheon, A.-I., Jun, H.-B., 2021. Metagenomics approach and canonical correspondence analysis of novel nitrifiers and ammonia-oxidizing archaea in full scale anaerobic-anoxic-oxic (A2/O) and oxidation ditch processes. *Bioresour. Technol.* 319, 124205.

Parris, D.J., Morgan, M.M., Stewart, F.J., 2019. Feeding rapidly alters microbiome composition and gene transcription in the clownfish gut. *Appl. Environ. Microbiol.* 85 e02479–18.

Peng, X., Feng, L., Jiang, W.-D., Wu, P., Liu, Y., Jiang, J., Kuang, S.-Y., Tang, L., Zhou, X.-Q., 2019. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (*Ctenopharyngodon idella*): enhancement the effect of protein-sparing by dietary lipid. *Fish Shellfish Immun.* 92, 552–569.

Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.-C., Mendell, J.T., Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nat. Biotechnol.* 33, 290–295.

Ren, L., Li, W., Qin, Q., Dai, H., Han, F., Xiao, J., Gao, X., Cui, J., Wu, C., Yan, X., Wang, G., Liu, G., Liu, J., Li, J., Wan, Z., Yang, C., Zhang, C., Tao, M., Wang, J., Luo, K., Wang, S., Hu, F., Zhao, R., Li, X., Liu, M., Zheng, H., Zhou, R., Shu, Y., Wang, Y., Liu, Q., Tang, C., Duan, W., Liu, S., 2019. The subgenomes show asymmetric expression of alleles in hybrid lineages of *Megalobrama amblycephala* × *Culter alburnus*. *Genome Res.* 29, 1805–1815.

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. *Genome Biol.* 12, R60.

Singh, J., Metrani, R., Shivanagoudra, S.R., Jayaprakasha, G.K., Patil, B.S., 2019. Review on bile acids: effects of the gut microbiome, interactions with dietary fiber, and alterations in the bioaccessibility of bioactive compounds. *J. Agric. Food Chem.* 67, 9124–9138.

Steinegger, M., Söding, J., 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. *Nat. Biotechnol.* 35, 1026–1028.

Tran, N.T., Wang, G.-T., Wu, S.-G., 2017. A review of intestinal microbes in grass carp *Ctenopharyngodon idellus* (Valenciennes). *Aquac. Res.* 48, 3287–3297.

Wahlström, A., Sayin, S.I., Marschall, H.-U., Bäckhed, F., 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. *Cell Metab.* 24, 41–50.

Wang, Y., Lu, Ying, Zhang, Y., Ning, Zemin, Li, Yan, Zhao, Q., Lu, H., Huang, R., Xia, X., Feng, Q., Liang, X., Liu, K., Zhang, L., Lu, T., Huang, T., Fan, D., Weng, Q., Zhu, C., Lu, Yiqi, Li, W., Wen, Z., Zhou, C., Tian, Q., Kang, X., Shi, M., Zhang, W., Jiang, S., Du, F., He, S., Liao, L., Li, Yongming, Gui, B., He, H., Ning, Zhen, Yang, C., He, L., Luo, L., Yang, R., Luo, Q., Liu, X., Li, S., Huang, W., Xiao, L., Lin, H., Han, B., Zhu, Z., 2015. The draft genome of the grass carp (*Ctenopharyngodon idellus*) provides insights into its evolution and vegetarian adaptation. *Nat. Genet.* 47, 625–631.

Wei, J., Guo, X., Liu, H., Chen, Y., Wang, W., 2018. The variation profile of intestinal microbiota in blunt snout bream (*Megalobrama amblycephala*) during feeding habit transition. *BMC Microbiol.* 18, 99.

Wen, J., Mercado, G.P., Volland, A., Doden, H.L., Lickwar, C.R., Crooks, T., Kakiyama, G., Kelly, C., Cocchiaro, J.L., Ridlon, J.M., Rawls, J.F., 2021. Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. *Sci. Adv.* 7, eabg1371.

Winston, J.A., Theriot, C.M., 2019. Diversification of host bile acids by members of the gut microbiota. *Gut Microbes* 11, 158–171.

Xiao, J., Kang, X., Xie, L., Qin, Q., He, Z., Hu, F., Zhang, C., Zhao, R., Wang, J., Luo, K., Liu, Y., Liu, S., 2014. The fertility of the hybrid lineage derived from female *Megalobrama amblycephala* × male *Culter alburnus*. *Anim. Reprod. Sci.* 151, 61–70.

Yao, T., Gu, X., Liang, X., Fall, F.N., Cao, A., Zhang, S., Guan, Y., Sun, B., Xue, M., 2021. Tolerance assessment of dietary bile acids in common carp (*Cyprinus carpio* L.) fed a high plant protein diet. *Aquaculture* 543, 737012.

Yin, P., Xie, S., Zhuang, Z., He, X., Tang, X., Tian, L., Liu, Y., Niu, J., 2021. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (*Micropterus salmoides*). *Aquaculture* 531, 735864.

Yu, H., Zhang, L., Chen, P., Liang, X., Cao, A., Han, J., Wu, X., Zheng, Y., Qin, Y., Xue, M., 2019. Dietary bile acids enhance growth, and alleviate hepatic fibrosis induced by a high starch diet via AKT/FOXO1 and cAMP/AMPK/SREBP1 pathway in *Micropterus salmoides*. *Front. Physiol.* 10, 1430.

Zhang, Y., Feng, H., Liang, X.-F., He, S., Lan, J., Li, L., 2022. Dietary bile acids reduce liver lipid deposition via activating farnesoid X receptor, and improve gut health by regulating gut microbiota in Chinese perch (*Siniperca chuatsi*). *Fish Shellfish Immun.* 121, 265–275.

Zhu, W., Lomsadze, A., Borodovsky, M., 2010. Ab initio gene identification in metagenomic sequences. *Nucleic Acids Res.* 38, e132.