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Surveillance of fish disease is essential to contain the spreading epidemics. Current surveillance mostly relies on
molecular biology testing methods, which often requires complex procedures and trained operators. These
techniques may hardly to be used in many small aquaculture farms. In this paper, a method based on machine
vision combined with a target detection network is proposed. A convolutional neural network (CNN) was
developed to detect fish infected with SVCV by analyzing the images. The datasets for the CNN that is imple-
mented from a YOLO v7 deep learning algorithm are information extracted from images containing fish pop-
ulations. An Auto-MSRCR algorithm was used to adaptively enhance the images to minimize manual
intervention. We introduced a novel NAM Attention mechanism integrated with the ELAN module in the original
YOLO v7 deep learning algorithm. Both channel attention and spatial attention modules were utilized to suppress
the insignificant features in the datasets to achieve a more precise and efficient detection method. Also, a loss
function MPDIoU was incorporated to avoid missing detection by this vision-based methodology. After training
of the model, the detection testing results show that the NAM-YOLO v7 network achieves over 95% prediction
accuracy and 93.8% recall, which is superior than other state-of-art YOLO series models. Also, the time for
detection for each image only takes 0.18 s illustrating the integrated modules improved the computation effi-
ciency. This novel technique is of great potential to be applied in small farms for rapid and early detection. It can
be a vital supplementary tool in developing more effective surveillance strategy by combined with other
established methods.

1. Introduction

Spring viremia of carp (SVC) is an acute, serious infectious disease
that threatens cyprinids and some non-cyprinids fishes (Ahne et al.,
2002). The direct pathogen of SVC is a bullet shaped RNA virus (spring
viremia of carp virus, SVCV). SVCV can infect many host species
including common carp (Cyprinus carpio), grass carp (Ctenopharyngodon
idella), koi (Cyprinus carpio koi), silver carp (Hypophthalmichthys moli-
trix), goldfish (Carassius auratus), rainbow trout (Oncorhynchus mykiss)
and many others (Dixon and Longshaw, 2005; Embregts et al., 2017;
Emmenegger et al., 2016; Goodwin, 2009). The SVC outbreaks usually
occur in the spring when the water temperatures are 11-17 °C, with very
high morbidity and mortality (Shao and Zhao, 2017). Outbreaks of SVC
have been reported in Western Europe, North America and East Asian

countries, resulting in significant losses to aquaculture (Padhi and
Verghese, 2008). It is listed as a notifiable disease by the OIE. Since there
are no effective vaccines or drugs to control the spread of SVC currently,
the feasible approach to contain SVC epidemics is early detection and
diagnosis (Fouad et al., 2019). As a result, many countries have regular
surveillance strategies in place to prevent outbreaks.

There are several molecular biology methods for diagnosing SVCV.
Polymerase chain reaction (PCR) or RT-PCR methods target a specific
glycoprotein gene or nucleoprotein gene that can detect many SVCV
subtypes (Shimahara et al., 2016). RT-qPCR provides quantitative re-
sults and is more sensitive than PCR (Shao et al., 2016) and is widely
used in pathogen testing. Loop-mediated isothermal amplification
technology (LAMP) (Shivappa et al., 2008) is a thermostatic nucleic acid
amplification technology that designs primers specific to the regions of
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the target gene and uses strand-substitution DNA polymerase to amplify
under thermostatic conditions. It is easier to use and suitable for rapid
detection applications. In addition to these molecular biology tech-
niques, histological analysis can be used to identify the pathological
changes in organs and tissues of SVCV-infected fish (Pan et al., 2023).
However, the extraction of bio-specimen for diagnosis using these
techniques relies on professional operators and delicate equipment. The
diagnosis procedures are normally labor-intensive and time-consuming.
Qualified personnel and instruments are insufficient in many small
aquaculture farms. Effective preventive real-time detection technologies
are in urgent need for these ponds or aquaculture farms. In fact, many
SVCYV infected fish have symptoms such as hemorrhage, slow swimming,
and imbalance movement. The symptoms of the infected fish could
possibly be utilized for rapid identification and detection of SVC among
fish populations.

In addition to the molecular biology techniques, machine vision
technologies are rapidly advancing in aquaculture due to its fast and
accurate advantages. The automatic fish classification was realized with
3D reconstructions established from texture and shape features extrac-
ted from collected images (Spampinato et al., 2010). Thus, the unusual
fish behaviors can be detected by clustering the fish trajectories. Huang
et al. extracted 66 types of features consisting of color, shape and texture
features of the fish images(Huang et al., 2012). The fish recognition or
classification was improved by a balanced-guaranteed optimization tree
method. The optical flow, entropy and statistical methods were com-
bined to detect the motion of fish. The dispersion behaviors of the fish
groups can be monitored(Zhao et al., 2016). The abnormal behaviors of
fish schools can also be monitored using the features in the images by
Harris angle detection and Lucas-Kanade optical flow after segmentation
(Yu et al., 2021). However, these detection techniques identify
abnormal fish behaviour by manually extracting features based on
collected data, leading to major limitations of their models in practical
applications. The small target in the water (Zhu et al., 2023a, 2023b),
blurring of the images (Oreifej et al., 2011) are also very critical prob-
lems compromising the detection precision, asking for more sophisti-
cated approaches.

In recent years, deep learning models have been widely used for
adaptive discrimination of fish status and target detection of abnormal
individuals during freshwater fish farming. A local abnormal behaviour
detection method was proposed based on corrected kinematic image
maps and recurrent neural networks with high accuracy performance
(Zhao et al., 2018). Convolutional neural networks (CNN) and machine
vision were adopted to detect and evaluate fish appetites (Zhou et al.,
2019). This approach does not require manual design of the feature-
assisted model for identification so as to reduce great labor efforts. A
method using CNNs and spatio-temporal image fusion has been pro-
posed. It is applied to efficiently identify and classify different behaviour
states of fish populations. Therefore, a better fish feeding identification
is achieved by fish behaviour recognition (Han et al., 2020). Deep
learning models have also been combined with graph theory to aid ac-
curate breeding selection by classifying and recognizing key parts of
target fish and then matching them to behaviour templates (Wang et al.,
2020). However, these studies have focused on discriminating fish
behaviour and have not been able to achieve precise location and
tracking of abnormal fish individuals.

Multi-class targets can be quickly, accurately and adaptively
discriminated and tracked by deep-learning target detection models.
Different individuals in a population are able to achieve their category
determination and precise localization based on these target detection
models. As a result, target detection models based on deep learning
techniques have also begun to be applied to achieve accurate identifi-
cation of fish individuals in the aquaculture process. A method that
combines YOLOv3 and MobileNetv1 networks to achieve real-time fish
tracking and population monitoring by processing fish images acquired
in real freshwater fish farms was proposed (Cai et al., 2020). The
improved YOLOv3-Lite and MobileNetV2 were integrated to build a
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low-cost, lightweight network to achieve automatic detection of fish
behaviour (Hu et al., 2021). In addition, an underwater camera unit
combined with the YOLO v5m model was attempted to be used for the
precise location and identification of diseased fish individuals during
aquaculture (Wang et al., 2023a, 2023b). Other target detection models
have the potential to enable the detection of abnormal fish, such as
YOLO v5s, YOLO v6, YOLOR and YOLO v7 (Pan and Li, 2022; Bist et al.,
2023; Song et al., 2023; Wang et al., 2023a, 2023b; Yu et al., 2023).
However, most of these methods are based on underwater cameras to
acquire images of fish while they are in motion, thus enabling the
detection and tracking of anomalous individuals based on depth target
detection networks.These methods do not achieve a balance between
accuracy and model size, and fail to meet the need for rapid detection
while maintaining high accuracy. The defects of narrow capture field,
low recognition accuracy and high cost of image acquisition equipment
make it difficult to be applied in the freshwater fish farms.

In this study, we adopt deep learning technology in SVC detection
based on the improved YOLO v7 algorithm. A CNN model called NAM-
YOLO-v7 was established. For accurate identification and detection of
fish with SVC symptoms in freshwater fish farming, a method combining
machine vision techniques with the NAM-YOLO v7 hybrid model is
proposed. First, we created datasets for training the model by obtaining
images of fish populations with some SVCV-infected fish in the experi-
mental environment. Second, the collected images are enhanced using
the automatic multi-scale color reduction Retinex (Auto-MSRCR) algo-
rithm. Third, a new target detection network NAM-YOLO v7 is designed
and applied for the exact localization of fish with SVC symptoms in
images. It combines a Normalization-based Attention Module (NAM)
with the YOLO v7 network (Liu et al., 2021). Based on the proposed
NAM-YOLO v7 network, it is possible to achieve more precise localiza-
tion of SVCV-infected fish and increase their detection rate. Our sug-
gested technology detects fish with SVC symptoms during freshwater
fish farming in a low-cost and rapid approach, which may serve as an
supplementary and alternative strategy in the future virus surveillance
programs.

2. Materials and methods
2.1. Fish and virus

Adult wild-type zebrafish were obtained from the Chinese Zebrafish
Resource Center and raised in accordance with the protocol (Zhou,
2024). The ages of the fish were between 3 and 4 months. Adult
zebrafish (length ~ 30 mm) collected from the breeding house were
used for this experiment. SVCV kept in our lab was cultivated in
epithelioma papulosum cyprini (EPC) cells at 26 °C with 2% fetal bovine
serum. Zebrafish were infected with SVCV by intraperitoneally injec-
tion. After 1-2 days of SVCV injection, these zebrafish demonstrated
symptoms including abdominal and gill hemorrhages, slow and imbal-
anced swimming with a bloated abdomen. The new generations of SVCV
were cultivated and extracted from the SVCV infected fish tissues. The
new generations of SVCV were cultivated and extracted from the SVCV
infected fish tissues. We determined the SVCV genome copy numbers
per unit volume of viral fluid. The process included the following steps:
constructing plasmid standards, grinding SVCV-infected fish, centri-
fuging the supernatant viral liquid, purifying the viral liquid to extract
RNA, and reverse transcription to obtain cDNA. Finally, absolute fluo-
rescence quantification was used to obtain the copy number of SVCV
genome in the viral liquid as 0.74-1.39 x 10° copy/uL.

2.2. Overview of the full methodological process

The overall flow of the proposed method for detecting fish with SVC
symptoms is shown in Fig. 1. A high-resolution camera is fixed above the
aquarium tank, capturing real-time images of the fish as they navigate
through the water. The real-time captured images are fed into a
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Fig. 1. Overview of the detection procedure using the machine vision technology combined with a NAM-YOLO v7 hybrid model. The real-time captured images are
fed into a computer to implement image enhancement (Auto-MSRCR), feature extraction, category determination and region regression to obtain the precise location

of the SVCV-infected fish.

computer to implement image enhancement, feature extraction, cate-
gory determination and region regression to obtain the precise location
of the SVCV-infected fish. In this scenario, the real-time captured images
are augmented using the Auto-MSRCR method to improve the detection
saliency of the fish targets. Fish with SVC symptoms will be distin-
guished from normal fish based on the proposed NAM-YOLO v7 network
using rectangular boxes to achieve localization and tagging. Thereafter,
the amount and position of fish with SVC symptoms can be determined.

2.3. Data acquisition

Zebrafish were challenged with 10 pl SVCV suspension as the
detection targets. The healthy zebrafish were placed in an aquarium
tank with introducing SVCV challenged fish. Videos of the zebrafish
were acquired by a 48-megapixel camera fixed on top of the tank in
1920 x 1080 resolution at a 60 fps frame rate. Videos of fish were
recorded and saved on a computer for three days in a row. The image
frames were extracted from the videos as datasets for the SVCV infected
fish detection analysis by OpenCV (a software to implement this ma-
chine vision technology). 1814 images were taken out of the recorded
video at predetermined intervals, and a detection dataset is obtained.
These images were used for the following analysis. All fish with SVC
symptoms in the images were identified and localized. SVCV-infected
and healthy fish on the images were labelled separately using the Lae-
IImg software. Finally, the created dataset contains 1814 screened im-
ages and coordinate information for different categories of fish.

2.4. Image enhancement method based on auto-MSRCR

In order to improve the prominence and contrast of the fish with SVC
symptoms in the images, the collected images were enhanced by the
Auto-MSRCR algorithm. The algorithm is based on the assumption that
the relationship between the acquired image and the real image is shown
in Eq. 1.

S(xvy) :R(xly)L(x»Y) (@)

where x,y are the horizontal and vertical coordinates of the pixel point
respectively; S(x,y) denotes the value of the pixel point of the image
captured by the camera at coordinates (x,y); R(x,y) denotes the value of
the reflected light intensity of the object at coordinates (x,y) and
L(x,y) represents the ambient light irradiation component of the scene
at coordinates (x,y). The Auto-MSRCR algorithm can then be used to get
the pixel values of the restored real image at coordinates (x,y) as shown
in Eq. 2:

Riuo-msrer(x,y) = C(x,) Z wu{InS(x,y) — In[S(x,y)*Gu(x,y) ] } (2)

n=1

where C(x,y) represents the recovery coefficient of the pixel at co-
ordinates (x,y) on the image. N represents the number of channels,
which usually takes the value of 3 for RGB images. wj, is the weighting
factor for the nth scale. G,(x,y) is the Gaussian filter function on the nth
scale at coordinates (x,y). In Eq. 2, the Gaussian filter function G(x,y) is
defined as follows:

x4y
G(x,y) = kew( 0 )

3

where ¢ is the scaling factor in the Gaussian function and k is the
normalization factor that ensuring [/G(x,y)dxdy = 1. Meanwhile, the
formula for the coefficient C(x,y) is shown as follows:

C(x,y) = ﬂ{log {aS(x,y) —log {Z S,,(x,y)} } } (©)]

where a and f§ are individually customised constants indicating the de-
gree of gain and the strength of the controlled nonlinearity, respectively.
Thus, based on the Auto-MSRCR algorithm, the captured images of fish
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can be enhanced and the effects of scattered light and uneven illumi-
nation on the water surface can be eliminated as much as possible.

2.5. Development of the proposed NAM-YOLO v7 network

We propose a novel NAM-YOLO v7 network with a normalization-
based attention mechanism for localization and tracking of SVCV-
infected fish. A graphical illustration of the developed network is
shown in Fig. 2. The enhanced images based on the Auto-MSRCR algo-
rithm were fed into the NAM-YOLO v7 network to achieve accurate
discrimination and localization of fish with SVC symptoms. In our pro-
posed NAM-YOLO v7 network, the NAM attention module is introduced
thereby enhancing the detection accuracy. At the same time, the original
ELAN structure in the network is optimized thereby increasing its
detection speed.

2.5.1. Structure of the proposed NAM-YOLO v7 network

The proposed NAM-YOLO v7 network model consists of a feature
extraction layer, a feature fusion layer and a prediction layer, as shown
in Fig. 2. As shown in Part 1 of Fig. 2, the feature extraction layer
consists of four general convolution (CBS) modules, three general
convolution-maximum pooling (MP) modules, and four efficient layer
aggregation modules (ELAN) fused with NAM Attention. In the general
convolution module, 2D convolution, batch specification and SiLU
activation functions are stacked for reducing the size of the image
feature map and extracting features. This series of convolutional oper-
ations is referred to as CBS. The efficient layer aggregation network
incorporating NAM Attention (N-ELAN) module consists of the ELAN
structure combined with the NAM Attention mechanism. The ELAN
module is an efficient network structure that enables the network to
learn more features and be more robust by controlling the shortest and
longest gradient paths. The MP module consists of the maximum pooling
layer and the CBS module. In the MP module, the CBS module is used to
adjust the number of channels as well as to implement feature fusion.
MP modules can be divided into two different types, MP-1 and MP-2,
depending on the number of branches. The MP-1 module consists of 2

Aquaculture 582 (2024) 740558

branches and the MP-2 module consists of 3 branches.

As shown in Part 2 of Fig. 2, the feature fusion layer consists of one
spatial pyramid pooling cross stage partial (SPPCSPC) module, four N-
ELAN modules, two 2D upsampling modules, four 2D convolution
modules, and two MP modules. The SPPCSPC module is a Cross Stage
Partial Network with a Spatial Pyramid Pooling (SPP) block that obtains
multiscale area features by employing the max pool and concatenation
procedures to overcome the issue of duplicating gradient information.
Three different sizes of maximum pooling layers as well as shortcut
branches are included in the SPPCSPC module. Based on this structure,
four receptive fields exist in the network and are used to match targets of
different sizes to be detected, thus better enabling the detection of tar-
gets of different sizes at different resolutions. In addition, the number of
channels is expanded to twice the number of input images in the feature
fusion layer, thus reducing feature loss.

As shown in Part 3 of Fig. 2, the final prediction layer is responsible
for giving the location information of the target to be detected as well as
the category information. The original YOLO v7 network suffers from
the defect that the optimization process of the loss function is con-
strained by the aspect ratio of the target to be detected, which leads to a
decrease in its detection accuracy. Therefore, in our proposed NAM-
YOLO v7 network, the MPDIoU loss function is used instead of the
ClIoU loss function to improve the simultaneous detection accuracy for
targets with different aspect ratios. Finally, the prediction of the exact
position of the target to be detected is achieved by filtering the target
localization region using MPDIoU border loss calculation and non-
maximum suppression (NMS) methods. Based on the improved loss
calculation function, fish with SVC symptoms of different body mor-
phologies and sizes can be successfully identified and localized by the
model, thus reducing the interference of different morphologies in their
swimming process on the detection results.

2.5.2. The structure of the N-ELAN module

As shown in Fig. 3, the N-ELAN module is one of the core innovations
to better enable the localization and tracking of fish with SVC symptoms
in different morphologies during movement. The designed N-ELAN
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module achieves feature extraction and enhancement of targets at
different scales by introducing the NAM. Mutual information between
features of different dimensions can be extracted based on the adopted
N-ELAN module while suppressing unimportant features. As a result,
more and deeper image feature information can be captured by the
NAM-YOLO v7 network embedded in the N-ELAM module, thus
enabling the localization and capture of fish with SVC symptoms in
different postures during swimming.

NAM is a redesigned attention mechanism based on a convolutional
block attention module (CBAM). The overall structure of the NAM is
shown in Part a of Fig. 3. As shown in Part a of Fig. 3, the channel
attention module and the spatial attention module are two submodules
of the NAM-based feature augmentation module. The specific structure
of the channel attention mechanism submodule is shown in Part b of
Fig. 3. In the channel attention sub-module, the batch normalization
(BN) layer is used to implement a normalized redistribution of input
features, as shown in Eq. 5:

Bin - ,M .
Boup = BN(By) = y——2+ 8, )

\/o5+v

where yp and op, are the mean and standard deviation of the input
features, respectively. y and f, are affine transformation parameters,
representing scale and displacement, respectively. By, and B,y repre-
sent the input eigenvalues and the output eigenvalues after channel
enhancement respectively. v represents the residual value. After the
features extracted from the image are fed into the attention submodule,
the output features are shown in Eq. 6:

Me = sigmoid(W,Ba,,,l) (6)

where W, = y;/>"._q7; is the output weight of the network.

The specific structure of the spatial attention mechanism submodule
is shown in Part c of Fig. 3. In the spatial attention submodule, the pixel
normalization layer is used to achieve a balance of weights between
different pixel points and for the enhancement of different features.
Thus, the output of the image extracted features after this layer is shown
in Eq. 7:

Bin —H
Bous = BNg(Biy) = A——22 4, @]

\/0} +¢

where pp_and op, are the mean and standard deviation of all pixels of the
input respectively. A and g, are affine transformation parameters in the
pixel normalization layer, representing scale and displacement, respec-
tively. Bi; and By, represent the input eigenvalues and the output ei-
genvalues after channel enhancement respectively. ¢ represents the
residual value. Finally, the output of the extracted feature maps in the
image based on the spatial attention submodule is shown in Eq. 8:

M, = sigmoid(W,B ) ®)

where W; = 4;/3;_o4: is the weight value of the output pixel.

Finally, NAM is combined with the ELAN network in YOLO v7 and
forms the improved N-ELAN network, as shown in Part d of Fig. 3. The
NAM module is inserted into the original ELAN network to achieve the
weighting of the feature maps extracted from the image in both channel
and pixel dimensions. Based on the weighted features, the model can
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better achieve the position discrimination of the fish with SVC symptoms
during the movement and improve its tracking accuracy.

2.5.3. Calculation of the loss function

The loss function was used to calculate the gap between the pre-
dicted area and the real area of the fish with SVC symptoms based on the
proposed NAM-YOLO v7 network implementation. During the network
training process, calculations based on the loss function can bring the
output as near to the true value as feasible, leading to more accurate
predictions. However, the loss function in the original YOLO v7 network
is affected by the aspect ratio of the detection frame during the
computation process, causing difficulties in its optimization. Due to the
large differences between the morphology and position of different in-
dividuals during the swimming process of the fish, it is difficult for the
existing YOLO v7 network to achieve precise positioning, which affects
the accuracy of tracking. At the same time, there may be a certain degree
of overlapping of bit positions between fish in different postures, causing
them to be difficult to detect well by the existing YOLO v7 network (Ma
and Xu, 2023). Therefore, the loss function CIoU used in the original
YOLO v7 network is replaced by the new loss function MPDIoU based on
the minimum point distance.

The computational procedure of MPDIoU is as follows: for detection
frames A and B, assume that (x{,y/) and (x4,y4) denote the upper-left
and lower-right corner point coordinates of A, respectively. (x%,y%) and
(x5,¥8) denote the upper-left and lower-right corner point coordinates
of B, respectively. The parameters w and h are denoted as the width and
height of the input image. The square of the distance between the pre-
diction box and the gound truth box at upper-left corner point is

calculated as follows: d2 = (x — x{)* + (y% — y4)® and the square of the
distance between the prediction box and the gound truth box at the

upper-left corner point is calculated as follows: d2 = (x& —x4)>+
2
08 -¥)"
Finally, the MPDIoU is obtained by
AnB 4 &
AUB w2 +h w?+h?

MPDIoU = 9
T

To make each bounding box By = [J@”’d7 yprd yprd hp’d] predicted by

the model converge to its corresponding true labelled bounding box

By =[x, y& we h¥'] " the minimal loss function is established as
follows:

7= m@l’ﬂZBweBﬂJ(Bgt, Bpred|®) 10)

where By denotes the set of real labelled bounding boxes. The parameter
O represents the regression parameter of the deep model. The loss
function is defined as Lypproy = 1 — MPDIoU. All the parameters of the
loss function of the regression of the bounding box can be determined by
four coordinates as follows:

|C| = (max (o', x") ) = min (xf',2") > (max(y5',¥5') ) = min(37'.37")
1D

where |C| denotes the area of the smallest outer rectangle covering By
and Byyg.
The center coordinates of the real label bounding box are calculated

as 3¢ = (' +x§) /2 and y¥ = (4} +y§) /2. The center coordinates of
the predicted label bounding box are calculated as X" = (xll’rd + xgrd> /

2and ¥ = (y‘{rd + ygrd) / 2, where wy, and hy, represent the width and

height of the real label bounding box. wj,q and hy,; represent the width
and height of the predicted label bounding box. In addition, w4 and
hyrq are calculated as Wy = xg"i — xqrd and hpq = yg’d — 1'd, respec-
tively. The coordinates of the upper left and lower right corner points
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can be used to determine all of the factors taken into account in the
existing loss functions. These factors include the non-overlapping area,
the distance from the center point, and the deviation of the width and
height, demonstrating how the algorithm could streamline the calcula-
tion process and take many factors into account.

3. Results
3.1. Training configuration of the NAM-YOLO v7 model

The SVCV infection experiment and protocols were inspected and
approved by the Ethics Committee of Hunan Normal University (No.
2023-047). From Section 2.3, a total of 1814 images were used for
model training and testing of fish with SVC symptoms. All the acquired
images are divided into a training set and a test set. Seven healthy fish
and two fish injected with SVCV were included in each image.

The key parameters and environment settings during training of the
NAM-YOLO v7 network are shown in Table 1. The training set of the
model consists of 1450 images and the testing set consists of 364 images.
The images in the training set were fed into the NAM-YOLO v7 model for
training after mosaic data enhancement (Zhou et al., 2023). In the
training of the NAM-YOLO v7 model, the batch size is set to 16. The
maximum number of iterations was set to 200. The loss function is
MPDIoU combined with BCEWithLogits. The resolution of the input
image for the NAM-YOLO v7 network is 1080 x 1080. The values of
IOU_thres and Conf thres are set to 0.65 and 0.001, respectively. Two
NVIDIA GTX 3090 GPUs were used in the training process, under the
environment of CUDA 11.0 and cuDNN 8.0.3. The code implementation
of our proposed method was realized by Python 3.8.

3.2. Enhanced image based on Auto-MSRCR

The captured images of the fish while swimming are enhanced based
on the automatic MSRCR algorithm, which is shown in Fig. 4. As shown
in Fig. 4, the visibility of different individuals in the fish school in the
image is improved. In aquatic environments, changes in light conditions
may result in a decrease in the contrast between a fish target exhibiting
SVC symptoms and its surroundings. Based on the automatic adjustment
of the enhancement factor in the Auto-MSRCR algorithm, the acquired
images are better adapted to different lighting conditions. The enhanced
contrast of the images reduce the effects of illumination. In addition, fish
with SVC symptoms can be further enhanced in terms of color signifi-
cance based on the Auto-MSRCR algorithm, thus improving the accuracy
of their detection.

In particular, when the images show aggregations of healthy and
virus-infected individuals in fish populations, their similar colors make
it difficult to distinguish between the two types of targets. The different
categories of targets can be strengthened based on the hierarchical
reinforcement automatically achieved by the adopted Auto-MSRCR al-
gorithm, thus improving the precision detection of SVC-infected fish in
the fish population.

Table 1
The hyperparameters and the training details.

Implementation Parameter name Selected value
details
Batch size 16
Max-epochs 200
Loss_function MPDIoU + BCEWithLogits
Training Input_size 1080 x 1080
Label_smoothing True
10U _thres 0.65
Conf_thres 0.001
GPU 2 Nvidia RTX 3090 GPUs
Environment Platform Python 3.8
Implementation PyTorch 1.7.1, CUDN 11.0, cuDNN
tools 8.0.3
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(a)

3.3. Experimental and prediction results

3.3.1. Evaluation indicator

The accuracy of the detection for fish infected with SVC symptoms
will be evaluated based on several indicators, such as the precision (P),
recall (R), F1 score, and mean average precision (mAP). Precision is the
probability of being identified as a diseased fish in the diseased samples.
It represents the accuracy of the prediction result of a positive sample.
Recall is the probability of being determined as a diseased fish by the
model among all diseased fish. It represents the overall prediction pre-
cision. The F1 score is introduced to achieve a balance between accuracy
and recall. AP stands for the average precision for normal fish or fish
with SVC symptoms. mAP represents the mean of the AP values of
normal fish and fish with SVC symptoms by integration. The precision,
recall, F1 score and mAP are calculated as follows:

P

VS ) 12
precision = g TFP 12)
P
e 1
recall TP L FN 13)
Fl1_Score — 2 x precision X recall a4

precision + recall

1 N—1 1
mAP:NZ</O Pl-(R)dR> as)

i=0

where true positive (TP) means that the sample is classified as positive
and correctly categorized. The false negative (FN) means that the sample
is classified as negative but incorrectly categorized. The false positive
(FP) means that the healthy fish sample is classified as positive. P;(R) is
the precision value at which the target of class i is recognized. N denotes
the number of categories of targets to be detected.

3.3.2. Experimental results

Due to the large amount of data needed for the training of the
detection model, a 5-fold cross-validation approach is used to further
enable the full utilization of the training set and the selection of the
model with the best performance. In 5-fold cross-validation, 1450 im-
ages in the training set are divided into five smaller image sets, where
each smaller dataset contains 290 independent images. Subsequently,
the detection model for fish with SVC symptoms was trained using a
combination of four smaller datasets as a training dataset. Meanwhile,
the remaining one smaller dataset will be tested after the network
completes every ten training epochs to obtain its prediction accuracy
and loss function value. Based on this cross-validation approach, a
detection network with optimal performance was obtained by setting a
certain range of hyperparameter values. The remaining 364 images were
used as an independent test set for the trained model. The set of optimal
key hyperparameter values was obtained by setting a certain range of
hyperparameter values and sampling tests based on a fixed step size. To

(b)

Fig. 4. Enhanced image based on the Auto-MSRCR algorithm: (a) original image; (b) image after data enhancement.

prevent overfitting of the training data, early termination of model
training is allowed if the mAP values on the validation dataset do not
improve. After 10 rounds of elapsed time, if the mAP on the validation
set is not improved or even affected, the training is terminated early.

The evaluation metrics of the proposed NAM-YOLO v7 network after
training based on the training sets are shown in Fig. 5. The value of the
F1-Score is between 0 and 1, with closer to 1 indicating a better balance
of precision and recall in the model. A smaller loss value means that the
model is more accurate in localizing SVCV-infected fish. The plot of
precision and recall shows the model performance under different pre-
cisions and recalls, which are used to filter the optimal model. As shown
in Fig. 5, we obtained the optimal target detection model after 200 it-
erations based on a 5-fold cross-validation process. The detection ac-
curacy of fish with SVC symptoms was 97.3%, the recall was 93.8% and
its mAP was 94.6% based on the optimal network obtained from
training. According to the above results, our proposed model achieves
high detection accuracy, while its detection results can cover all the fish
with SVC symptoms as much as possible.

To further validate the performance of the proposed NAM-YOLO v7
model, we compare it with other target detection models based on an
independent validation set, including YOLOv5s, YOLOv6, YOLOX,
YOLOR and YOLO v7. These models used for comparison were all based
on the same training set using a 5-fold cross-validation method to
complete the training. These models are tested for their performance
based on an independent test set, using precision, recall and detection
time as evaluation metrics. The results of the performance evaluation of
the obtained models are shown in Table 2. As shown in Table 2, our
proposed NAM-YOLO v7 network applied to detect SVCV-infected fish in
the images acquired by the fish population achieved the best perfor-
mance with 97.3% prediction accuracy and 93.8% recall. The time to
complete the detection of an image based on the NAM-YOLO v7 model is
only higher than that of the YOLO v6 network, but its performance is
much better. The above results show that the proposed NAM-YOLO v7
network applied to the detection of fish with SVC symptoms in the fish
population has optimal performance and good detection speed.

An ablation experiment was performed to fully demonstrate the
usefulness of our proposed enhancement strategy in the NAM-YOLO v7
network (Wang et al., 2019). The ablation experiment is a set of ex-
periments in which components of the NAM-YOLO v7 are removed to
measure the impact of these components on the performance of the
network (Zhu et al., 2023a, 2023b). The results of the ablation experi-
ments are shown in the last three rows of Table 2. As shown in Table 2,
after adding the NAM module, the accuracy increased by 1.7%, the
recall increased slightly by 0.3%, and the detection time per each image
decreased. The initial YOLO v7 network improves its accuracy by 1.7%
and its recall by 0.3% after the addition of the NAM module. This is
mainly because the original YOLO v7 network has been enhanced by the
addition of the NAM module to better extract the deep image features of
the SVC-infected fish for its discrimination. After replacing the original
loss function with MPDIoU in the network, the accuracy is increased by
1.1% and the recall is increased by 0.7%. This result suggests that the
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Fig. 5. The training results of our proposed NAM-YOLO v7 network: (a) the results of the indicator F1 score during the training process; (b) the value of the loss
function during the training process; (c) the relationship between accuracy and recall during the training process; (d) variation curve of the ratio of accuracy to recall

during the training process.

Table 2
Performance comparison between different object detection models.

Detection models Precision Recall Inference per image
(%) (%) (ms)
YOLO V5s network 91.4 90.3 1243
YOLO V6 network 93.2 91.7 138.8
YOLOX network 94.2 92.5 317
YOLOR network 91.9 92.1 1531
YOLO v7 network 94.5 92.8 218
YOLO v7 + NAM Attention 96.2 93.1 184
YOLO v7 + NAM
Attention + 97.3 93.8 172

MPDIoU (NAM-YOLO
v7)

application of MPDIoU as a loss function in the proposed NAM-YOLO v7
network can enhance the recognition ability of the model when fish with
SVC symptoms overlap with healthy fish. Compared with the original
YOLO v7 network, the proposed NAM-YOLO v7 network achieves a
2.8% improvement in accuracy and a 1% improvement in the recall rate
for the detection of fish infected with SVCV. These results amply
demonstrate the effectiveness of these improvement strategies that we
have proposed.

Finally, based on the proposed NAM-YOLO v7 network combined

with machine vision techniques, fish with SVC symptoms were accu-
rately identified and localized (Fig. 6). SVCV-infected fish showing
symptoms were labelled in the red rectangular box, while other healthy
fish were labelled in the blue rectangular box. Although the differences
in shape and size between healthy fish and fish with SVC symptoms were
small, the posture while swimming and the color of the hemorrhage
demonstrated difference between the two types of fish. The images of
two different types of fish while swimming are captured by machine
vision methods so that these differences are converted into features on
the image thus captured and extracted by our proposed NAM-YOLO v7
network. Based on the captured features, fish with SVC symptoms can be
discriminated and precisely located. Although the scattering of light on
the water surface and fish feces introduces a certain degree of interfer-
ence to the detection process, more discriminative features can be
adaptively extracted by the NAM module in the network and reduce the
effect of these interference to a certain extent.

Gradient-weighted class activation mapping (Grad-CAM) was used
(Zhu et al., 2023b) to explore the mechanism by which our proposed
NAM-YOLO v7 network enables the detection of fish with SVC symp-
toms. The output of the last layer of the network during the detection of
fish with SVC symptoms based on the NAM-YOLO v7 network in the
experiment shown in Fig. 6 was used to reveal how it works, as shown in
Fig. 7. From the results presented in Fig. 7, different categories of fish
have the highest weight of features in their torso part while swimming,
and the extracted features are basically concentrated on the body and
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Fig. 6. Detection of target fish with SVC symptoms using the NAM-YOLO v7 network. The red anchor boxes indicate the fish with SVC symptoms detected by the
CNN. The green anchor boxes indicate the fish without SVC symptoms. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Fig. 7. Grad-CAM plot derived from the prediction layer of NAM-YOLO v7 network. The darker the color, the greater the value and the more important the feature

information indicated.

head of the fish. Combining the results in Fig. 6 and Fig. 7, it can be seen
that the NAM-YOLO v7 network based on our training can effectively
extract the key features of the fish during movement to achieve
discrimination and tracking of the fish with SVC symptoms. These re-
sults demonstrate the modified modules in our model are indispensable
to focus on the essential part in the images, which allows for the reali-
zation of precisely detecting the specific SVCV-infected fish.

Finally, the trained model was deployed and integrated into a
monitoring system for the fish farming process, enabling online moni-
toring and tracking of fish with SVC symptoms during the farming
process, as shown in Fig. 8. The designed monitoring software was
developed based on the PyQt5 platform, which enables the counting and
tracking of fish with SVC symptoms in the aquaculture farms. The
number of fish with SVC symptoms in the picture is displayed at the
bottom of the software. In the future, the application and dissemination
of the developed system in the actual freshwater fish farming process
should be feasible. It will be very convenient to carry out a surveillance
plan with many devices equipped with video capture and online data

sharing. A data analysis center can be established to detect the infected
fish with the further optimized neural network model.

4. Discussion

The possible outbreaks of SVC are very concerning. Hence, SVC is
listed as one of the OIE notifiable diseases. Most existing molecular
biology testing methods for SVC surveillance depend on professional
operators and biofacilities (Shivappa et al., 2008; Clouthier et al., 2021).
The procedures for these tests, such as PCR/qPCR, are normally time and
labor-intensive, compared to vision-based detection techniques. Mo-
lecular biology testing methods with high precision are indispensable for
inspecting at essential transmission routes such as importing sites of fish
outside of the country. However, small farms may suffer from insuffi-
cient trained persons or facilities to perform biological tests. To lay a
foundation for a more convenient and cost-effective preventive sur-
veillance system, this work aims to develop a convenient method for
rapid detection using novel approaches. The images are utilized to



Y. Cai et al.

Original Image

Aquaculture 582 (2024) 740558

Number of sick fish: =

Fig. 8. SVC detection and counting system developed using PyQt. On the left is the image captured by the camera in real time, and on the right is the image that is the
result of the detection. The number of fish with SVC symptoms in the picture is displayed at the bottom of the software.

detect the SVCV-infected fish after enhancement as datasets utilized by
an improved YOLO v7 network.

A good dataset is the preliminary requirement to develop a high-
precision target detection neural network model (Zhao et al., 2021).
Due to the limitation of currently available datasets in detecting fish
with SVC symptoms, this study experimentally collected the data by
recording SVCV-infected and healthy zebrafish. The images for the
neural network were then obtained from the video by frame-splitting
and filtering. The labeling of the dataset is also critical to provide key
information such as the location and category of the target in the images.
Despite the difficulty brought by the overlapping or occlusion of fish
during data acquisition, as many targets as possible were labelled in
order to provide sufficient training data for the network. A total of 1814
images were extracted and over 10,000 targets were identified. Under-
water videos or image recordings can be affected by a variety of factors,
such as water refraction, scattering, and color attenuation, leading to
image distortion, blurring, and color distortion (Zhao et al., 2021). Thus,
Auto-MSRCR is developed for data enhancement to improve image
quality. In addition, to prevent the network from learning irrelevant
features, such as fish orientation, we introduce mosaic data enhance-
ment, including updown and left-right flipping, to ensure that the
detection by the model is less compromised by the collected lower
quality images. The data enhancement lays a foundation for the feasible
and efficient application of our neural network in precisely detecting the
SVC symptoms. Also, the data enhancement algorithm can be migrated
or adopted in detecting other fish diseases by machine vision technol-
ogies, which can benefit related studies and applications in the similar
fields.

Several excellent models have been proposed and applied to fish
aquaculture. The YOLO series models were adopted in real-time fish
monitoring (Hu et al., 2021; Wang et al., 2023). In this study, a target
detection network based on YOLO v7 was introduced as a base model
and used to implement the detection process of fish with SVC symptoms.
At the same time, NAM modules are added to the YOLO v7 network and
combined to form an N-ELAN structure thus enabling the enhancement
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of sensitive features in the image (Zhao et al., 2021; Jalal et al., 2020; Hu
et al.,, 2018). The weights of different channels in the image can be
adjusted based on the NAM module according to the importance of
different channel information to enable useful features to be further
extracted, thus improving the detection accuracy of fish with SVC
symptoms. In addition, the introduction of the NAM module can further
suppress some meaningless image features, thus reducing the compu-
tation of the model and decreasing the detection time of a single image.
By replacing the original CIOU loss function in YOLO v7 with the
MPDIoU loss function, the detection error due to the difference in the
aspect ratio of the individuals in the fish population was eliminated to
some extent. At the same time, the MPDIoU loss function was used to
reduce the detection error of the model due to the overlapping of in-
dividuals when the fish were aggregated. This is because the MPDIoU
function solves the problem better by considering the minimum distance
in the calculation process. Therefore, the same aspect ratio is not
restricted during the optimization process. The high precision and high
recall rate of our model demonstrated the effectiveness compared to
other established models (Table 2). In the aquaculture farms, the
detection error must be exaggerated by more complicated environment.
Hence, the integrated module and updated loss function will be inevi-
table to guarantee the detection accuracy and facilitate the following
realistic applications.

Based on the above improvement strategies, our proposed NAM-
YOLO v7 network achieves the best performance compared to other
target detection networks (e.g., YOLO v5s, YOLO v6, YOLO X, YOLO R,
and YOLO v7) (Hou et al., 2021; Li et al., 2023). Based on our designed
NAM-YOLO v7 network, the accuracy and recall of achieving the
detection of fish with SVC symptoms while swimming are 97.3% and
93.8%, respectively. Its detection time for a single image is only 172 ms.
Meanwhile, an ablation experiment shows that our proposed improved
strategy effectively enhances the performance of the target detection
network applied in the detection of fish with SVC symptoms. Experi-
ments using Grad-Cam showed that the model succeeded in focusing its
attention highly on diseased fish, demonstrating its accuracy and
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robustness in identifying fish with SVC symptoms. These results fully
demonstrate that our proposed method of machine vision combined
with a trained NAM-YOLO v7 network can effectively achieve online
detection of fish with SVC symptoms during freshwater fish farming.
This technique is essential for the rapid detection and isolation of
potentially infected fish so that appropriate measures can be taken to
contain or cut off transmission.

Although we realized the identification of fish with SVC symptoms,
our proposed method suffered from some limitations as a preliminary
investigation. The datasets collected in this study do not cover the SVCV
infection of different types, ages and sizes of fish. More datasets need to
be collected to make the model more widely applicable. Second, the
dataset for the neural network detection method is based on the image
format extracted from the video stream. Some features of fish behaviors
may be limited. In addition, the labeling of images before the training of
the object detection model is very time-consuming. Weakly supervised
or unsupervised models may be adopted to achieve reliable detection
under the circumstances of limited data labeling (Xie et al., 2021; Bar
et al., 2022).

Surveillance is of great significance in warning and containing the
epidemic diseases. In this study, we developed a CNN-based vision
technique for SVC detection. The neural network is established based on
YOLOv7 network. By integrating with NAM Attention mechanism and
MPDIoU, the detection precision and computation cost are improved
than other state-of-art detection algorithms in SVC detection. The target
loss in detection is minimized. The ablation experiment demonstrates
the enhancement of these modules. The output heat map of the NAM-
YOLOvV7 network by Grad-Cam illustrate the CNN is focusing on the
expected fish targets instead of other insignificant area. Overall, the
experimental testing datasets demonstrate that this NAM-YOLOv7
network achieved the goal of rapid and accurate detection of fish with
SVC symptom, which could provide a very efficient and cost-effective
method to serve a broader disease surveillance plan in the future.
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