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A B S T R A C T   

Surveillance of fish disease is essential to contain the spreading epidemics. Current surveillance mostly relies on 
molecular biology testing methods, which often requires complex procedures and trained operators. These 
techniques may hardly to be used in many small aquaculture farms. In this paper, a method based on machine 
vision combined with a target detection network is proposed. A convolutional neural network (CNN) was 
developed to detect fish infected with SVCV by analyzing the images. The datasets for the CNN that is imple
mented from a YOLO v7 deep learning algorithm are information extracted from images containing fish pop
ulations. An Auto-MSRCR algorithm was used to adaptively enhance the images to minimize manual 
intervention. We introduced a novel NAM Attention mechanism integrated with the ELAN module in the original 
YOLO v7 deep learning algorithm. Both channel attention and spatial attention modules were utilized to suppress 
the insignificant features in the datasets to achieve a more precise and efficient detection method. Also, a loss 
function MPDIoU was incorporated to avoid missing detection by this vision-based methodology. After training 
of the model, the detection testing results show that the NAM-YOLO v7 network achieves over 95% prediction 
accuracy and 93.8% recall, which is superior than other state-of-art YOLO series models. Also, the time for 
detection for each image only takes 0.18 s illustrating the integrated modules improved the computation effi
ciency. This novel technique is of great potential to be applied in small farms for rapid and early detection. It can 
be a vital supplementary tool in developing more effective surveillance strategy by combined with other 
established methods.   

1. Introduction 

Spring viremia of carp (SVC) is an acute, serious infectious disease 
that threatens cyprinids and some non-cyprinids fishes (Ahne et al., 
2002). The direct pathogen of SVC is a bullet shaped RNA virus (spring 
viremia of carp virus, SVCV). SVCV can infect many host species 
including common carp (Cyprinus carpio), grass carp (Ctenopharyngodon 
idella), koi (Cyprinus carpio koi), silver carp (Hypophthalmichthys moli
trix), goldfish (Carassius auratus), rainbow trout (Oncorhynchus mykiss) 
and many others (Dixon and Longshaw, 2005; Embregts et al., 2017; 
Emmenegger et al., 2016; Goodwin, 2009). The SVC outbreaks usually 
occur in the spring when the water temperatures are 11–17 ◦C, with very 
high morbidity and mortality (Shao and Zhao, 2017). Outbreaks of SVC 
have been reported in Western Europe, North America and East Asian 

countries, resulting in significant losses to aquaculture (Padhi and 
Verghese, 2008). It is listed as a notifiable disease by the OIE. Since there 
are no effective vaccines or drugs to control the spread of SVC currently, 
the feasible approach to contain SVC epidemics is early detection and 
diagnosis (Fouad et al., 2019). As a result, many countries have regular 
surveillance strategies in place to prevent outbreaks. 

There are several molecular biology methods for diagnosing SVCV. 
Polymerase chain reaction (PCR) or RT-PCR methods target a specific 
glycoprotein gene or nucleoprotein gene that can detect many SVCV 
subtypes (Shimahara et al., 2016). RT-qPCR provides quantitative re
sults and is more sensitive than PCR (Shao et al., 2016) and is widely 
used in pathogen testing. Loop-mediated isothermal amplification 
technology (LAMP) (Shivappa et al., 2008) is a thermostatic nucleic acid 
amplification technology that designs primers specific to the regions of 
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the target gene and uses strand-substitution DNA polymerase to amplify 
under thermostatic conditions. It is easier to use and suitable for rapid 
detection applications. In addition to these molecular biology tech
niques, histological analysis can be used to identify the pathological 
changes in organs and tissues of SVCV-infected fish (Pan et al., 2023). 
However, the extraction of bio-specimen for diagnosis using these 
techniques relies on professional operators and delicate equipment. The 
diagnosis procedures are normally labor-intensive and time-consuming. 
Qualified personnel and instruments are insufficient in many small 
aquaculture farms. Effective preventive real-time detection technologies 
are in urgent need for these ponds or aquaculture farms. In fact, many 
SVCV infected fish have symptoms such as hemorrhage, slow swimming, 
and imbalance movement. The symptoms of the infected fish could 
possibly be utilized for rapid identification and detection of SVC among 
fish populations. 

In addition to the molecular biology techniques, machine vision 
technologies are rapidly advancing in aquaculture due to its fast and 
accurate advantages. The automatic fish classification was realized with 
3D reconstructions established from texture and shape features extrac
ted from collected images (Spampinato et al., 2010). Thus, the unusual 
fish behaviors can be detected by clustering the fish trajectories. Huang 
et al. extracted 66 types of features consisting of color, shape and texture 
features of the fish images(Huang et al., 2012). The fish recognition or 
classification was improved by a balanced-guaranteed optimization tree 
method. The optical flow, entropy and statistical methods were com
bined to detect the motion of fish. The dispersion behaviors of the fish 
groups can be monitored(Zhao et al., 2016). The abnormal behaviors of 
fish schools can also be monitored using the features in the images by 
Harris angle detection and Lucas-Kanade optical flow after segmentation 
(Yu et al., 2021). However, these detection techniques identify 
abnormal fish behaviour by manually extracting features based on 
collected data, leading to major limitations of their models in practical 
applications. The small target in the water (Zhu et al., 2023a, 2023b), 
blurring of the images (Oreifej et al., 2011) are also very critical prob
lems compromising the detection precision, asking for more sophisti
cated approaches. 

In recent years, deep learning models have been widely used for 
adaptive discrimination of fish status and target detection of abnormal 
individuals during freshwater fish farming. A local abnormal behaviour 
detection method was proposed based on corrected kinematic image 
maps and recurrent neural networks with high accuracy performance 
(Zhao et al., 2018). Convolutional neural networks (CNN) and machine 
vision were adopted to detect and evaluate fish appetites (Zhou et al., 
2019). This approach does not require manual design of the feature- 
assisted model for identification so as to reduce great labor efforts. A 
method using CNNs and spatio-temporal image fusion has been pro
posed. It is applied to efficiently identify and classify different behaviour 
states of fish populations. Therefore, a better fish feeding identification 
is achieved by fish behaviour recognition (Han et al., 2020). Deep 
learning models have also been combined with graph theory to aid ac
curate breeding selection by classifying and recognizing key parts of 
target fish and then matching them to behaviour templates (Wang et al., 
2020). However, these studies have focused on discriminating fish 
behaviour and have not been able to achieve precise location and 
tracking of abnormal fish individuals. 

Multi-class targets can be quickly, accurately and adaptively 
discriminated and tracked by deep-learning target detection models. 
Different individuals in a population are able to achieve their category 
determination and precise localization based on these target detection 
models. As a result, target detection models based on deep learning 
techniques have also begun to be applied to achieve accurate identifi
cation of fish individuals in the aquaculture process. A method that 
combines YOLOv3 and MobileNetv1 networks to achieve real-time fish 
tracking and population monitoring by processing fish images acquired 
in real freshwater fish farms was proposed (Cai et al., 2020). The 
improved YOLOv3-Lite and MobileNetV2 were integrated to build a 

low-cost, lightweight network to achieve automatic detection of fish 
behaviour (Hu et al., 2021). In addition, an underwater camera unit 
combined with the YOLO v5m model was attempted to be used for the 
precise location and identification of diseased fish individuals during 
aquaculture (Wang et al., 2023a, 2023b). Other target detection models 
have the potential to enable the detection of abnormal fish, such as 
YOLO v5s, YOLO v6, YOLOR and YOLO v7 (Pan and Li, 2022; Bist et al., 
2023; Song et al., 2023; Wang et al., 2023a, 2023b; Yu et al., 2023). 
However, most of these methods are based on underwater cameras to 
acquire images of fish while they are in motion, thus enabling the 
detection and tracking of anomalous individuals based on depth target 
detection networks.These methods do not achieve a balance between 
accuracy and model size, and fail to meet the need for rapid detection 
while maintaining high accuracy. The defects of narrow capture field, 
low recognition accuracy and high cost of image acquisition equipment 
make it difficult to be applied in the freshwater fish farms. 

In this study, we adopt deep learning technology in SVC detection 
based on the improved YOLO v7 algorithm. A CNN model called NAM- 
YOLO-v7 was established. For accurate identification and detection of 
fish with SVC symptoms in freshwater fish farming, a method combining 
machine vision techniques with the NAM-YOLO v7 hybrid model is 
proposed. First, we created datasets for training the model by obtaining 
images of fish populations with some SVCV-infected fish in the experi
mental environment. Second, the collected images are enhanced using 
the automatic multi-scale color reduction Retinex (Auto-MSRCR) algo
rithm. Third, a new target detection network NAM-YOLO v7 is designed 
and applied for the exact localization of fish with SVC symptoms in 
images. It combines a Normalization-based Attention Module (NAM) 
with the YOLO v7 network (Liu et al., 2021). Based on the proposed 
NAM-YOLO v7 network, it is possible to achieve more precise localiza
tion of SVCV-infected fish and increase their detection rate. Our sug
gested technology detects fish with SVC symptoms during freshwater 
fish farming in a low-cost and rapid approach, which may serve as an 
supplementary and alternative strategy in the future virus surveillance 
programs. 

2. Materials and methods 

2.1. Fish and virus 

Adult wild-type zebrafish were obtained from the Chinese Zebrafish 
Resource Center and raised in accordance with the protocol (Zhou, 
2024). The ages of the fish were between 3 and 4 months. Adult 
zebrafish (length ~ 30 mm) collected from the breeding house were 
used for this experiment. SVCV kept in our lab was cultivated in 
epithelioma papulosum cyprini (EPC) cells at 26 ◦C with 2% fetal bovine 
serum. Zebrafish were infected with SVCV by intraperitoneally injec
tion. After 1–2 days of SVCV injection, these zebrafish demonstrated 
symptoms including abdominal and gill hemorrhages, slow and imbal
anced swimming with a bloated abdomen. The new generations of SVCV 
were cultivated and extracted from the SVCV infected fish tissues. The 
new generations of SVCV were cultivated and extracted from the SVCV 
infected fish tissues. We determined the SVCV genome copy numbers 
per unit volume of viral fluid. The process included the following steps: 
constructing plasmid standards, grinding SVCV-infected fish, centri
fuging the supernatant viral liquid, purifying the viral liquid to extract 
RNA, and reverse transcription to obtain cDNA. Finally, absolute fluo
rescence quantification was used to obtain the copy number of SVCV 
genome in the viral liquid as 0.74–1.39 × 106 copy/uL. 

2.2. Overview of the full methodological process 

The overall flow of the proposed method for detecting fish with SVC 
symptoms is shown in Fig. 1. A high-resolution camera is fixed above the 
aquarium tank, capturing real-time images of the fish as they navigate 
through the water. The real-time captured images are fed into a 
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computer to implement image enhancement, feature extraction, cate
gory determination and region regression to obtain the precise location 
of the SVCV-infected fish. In this scenario, the real-time captured images 
are augmented using the Auto-MSRCR method to improve the detection 
saliency of the fish targets. Fish with SVC symptoms will be distin
guished from normal fish based on the proposed NAM-YOLO v7 network 
using rectangular boxes to achieve localization and tagging. Thereafter, 
the amount and position of fish with SVC symptoms can be determined. 

2.3. Data acquisition 

Zebrafish were challenged with 10 μl SVCV suspension as the 
detection targets. The healthy zebrafish were placed in an aquarium 
tank with introducing SVCV challenged fish. Videos of the zebrafish 
were acquired by a 48-megapixel camera fixed on top of the tank in 
1920 × 1080 resolution at a 60 fps frame rate. Videos of fish were 
recorded and saved on a computer for three days in a row. The image 
frames were extracted from the videos as datasets for the SVCV infected 
fish detection analysis by OpenCV (a software to implement this ma
chine vision technology). 1814 images were taken out of the recorded 
video at predetermined intervals, and a detection dataset is obtained. 
These images were used for the following analysis. All fish with SVC 
symptoms in the images were identified and localized. SVCV-infected 
and healthy fish on the images were labelled separately using the Lae
lImg software. Finally, the created dataset contains 1814 screened im
ages and coordinate information for different categories of fish. 

2.4. Image enhancement method based on auto-MSRCR 

In order to improve the prominence and contrast of the fish with SVC 
symptoms in the images, the collected images were enhanced by the 
Auto-MSRCR algorithm. The algorithm is based on the assumption that 
the relationship between the acquired image and the real image is shown 
in Eq. 1. 

S(x, y) = R(x, y)L(x, y) (1)  

where x, y are the horizontal and vertical coordinates of the pixel point 
respectively; S(x, y) denotes the value of the pixel point of the image 
captured by the camera at coordinates (x, y); R(x, y) denotes the value of 
the reflected light intensity of the object at coordinates (x, y) and 
L(x, y) represents the ambient light irradiation component of the scene 
at coordinates (x, y). The Auto-MSRCR algorithm can then be used to get 
the pixel values of the restored real image at coordinates (x, y) as shown 
in Eq. 2: 

RAuto− MSRCR(x, y) = C(x, y)
∑N

n=1
ωn{InS(x, y) − In[S(x, y)*Gn(x, y) ] } (2)  

where C(x, y) represents the recovery coefficient of the pixel at co
ordinates (x, y) on the image. N represents the number of channels, 
which usually takes the value of 3 for RGB images. ωn is the weighting 
factor for the nth scale. Gn(x, y) is the Gaussian filter function on the nth 
scale at coordinates (x, y). In Eq. 2, the Gaussian filter function G(x, y) is 
defined as follows: 

G(x, y) = kexp
(

−
x2 + y2

σ2

)

(3)  

where σ is the scaling factor in the Gaussian function and k is the 
normalization factor that ensuring ∬ G(x, y)dxdy = 1. Meanwhile, the 
formula for the coefficient C(x, y) is shown as follows: 

C(x, y) = β

{

log

[

αS(x, y) − log

[
∑N

n=1
Sn(x, y)

]]}

(4)  

where α and β are individually customised constants indicating the de
gree of gain and the strength of the controlled nonlinearity, respectively. 
Thus, based on the Auto-MSRCR algorithm, the captured images of fish 

Fig. 1. Overview of the detection procedure using the machine vision technology combined with a NAM-YOLO v7 hybrid model. The real-time captured images are 
fed into a computer to implement image enhancement (Auto-MSRCR), feature extraction, category determination and region regression to obtain the precise location 
of the SVCV-infected fish. 
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can be enhanced and the effects of scattered light and uneven illumi
nation on the water surface can be eliminated as much as possible. 

2.5. Development of the proposed NAM-YOLO v7 network 

We propose a novel NAM-YOLO v7 network with a normalization- 
based attention mechanism for localization and tracking of SVCV- 
infected fish. A graphical illustration of the developed network is 
shown in Fig. 2. The enhanced images based on the Auto-MSRCR algo
rithm were fed into the NAM-YOLO v7 network to achieve accurate 
discrimination and localization of fish with SVC symptoms. In our pro
posed NAM-YOLO v7 network, the NAM attention module is introduced 
thereby enhancing the detection accuracy. At the same time, the original 
ELAN structure in the network is optimized thereby increasing its 
detection speed. 

2.5.1. Structure of the proposed NAM-YOLO v7 network 
The proposed NAM-YOLO v7 network model consists of a feature 

extraction layer, a feature fusion layer and a prediction layer, as shown 
in Fig. 2. As shown in Part 1 of Fig. 2, the feature extraction layer 
consists of four general convolution (CBS) modules, three general 
convolution-maximum pooling (MP) modules, and four efficient layer 
aggregation modules (ELAN) fused with NAM Attention. In the general 
convolution module, 2D convolution, batch specification and SiLU 
activation functions are stacked for reducing the size of the image 
feature map and extracting features. This series of convolutional oper
ations is referred to as CBS. The efficient layer aggregation network 
incorporating NAM Attention (N-ELAN) module consists of the ELAN 
structure combined with the NAM Attention mechanism. The ELAN 
module is an efficient network structure that enables the network to 
learn more features and be more robust by controlling the shortest and 
longest gradient paths. The MP module consists of the maximum pooling 
layer and the CBS module. In the MP module, the CBS module is used to 
adjust the number of channels as well as to implement feature fusion. 
MP modules can be divided into two different types, MP-1 and MP-2, 
depending on the number of branches. The MP-1 module consists of 2 

branches and the MP-2 module consists of 3 branches. 
As shown in Part 2 of Fig. 2, the feature fusion layer consists of one 

spatial pyramid pooling cross stage partial (SPPCSPC) module, four N- 
ELAN modules, two 2D upsampling modules, four 2D convolution 
modules, and two MP modules. The SPPCSPC module is a Cross Stage 
Partial Network with a Spatial Pyramid Pooling (SPP) block that obtains 
multiscale area features by employing the max pool and concatenation 
procedures to overcome the issue of duplicating gradient information. 
Three different sizes of maximum pooling layers as well as shortcut 
branches are included in the SPPCSPC module. Based on this structure, 
four receptive fields exist in the network and are used to match targets of 
different sizes to be detected, thus better enabling the detection of tar
gets of different sizes at different resolutions. In addition, the number of 
channels is expanded to twice the number of input images in the feature 
fusion layer, thus reducing feature loss. 

As shown in Part 3 of Fig. 2, the final prediction layer is responsible 
for giving the location information of the target to be detected as well as 
the category information. The original YOLO v7 network suffers from 
the defect that the optimization process of the loss function is con
strained by the aspect ratio of the target to be detected, which leads to a 
decrease in its detection accuracy. Therefore, in our proposed NAM- 
YOLO v7 network, the MPDIoU loss function is used instead of the 
CIoU loss function to improve the simultaneous detection accuracy for 
targets with different aspect ratios. Finally, the prediction of the exact 
position of the target to be detected is achieved by filtering the target 
localization region using MPDIoU border loss calculation and non- 
maximum suppression (NMS) methods. Based on the improved loss 
calculation function, fish with SVC symptoms of different body mor
phologies and sizes can be successfully identified and localized by the 
model, thus reducing the interference of different morphologies in their 
swimming process on the detection results. 

2.5.2. The structure of the N-ELAN module 
As shown in Fig. 3, the N-ELAN module is one of the core innovations 

to better enable the localization and tracking of fish with SVC symptoms 
in different morphologies during movement. The designed N-ELAN 

Fig. 2. The specific structure of the NAM-YOLO v7 CNN. (a) Part 1: feature extraction layer; (b) Part 2: feature fusion layer; (c) Part 3: prediction output layer.  
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module achieves feature extraction and enhancement of targets at 
different scales by introducing the NAM. Mutual information between 
features of different dimensions can be extracted based on the adopted 
N-ELAN module while suppressing unimportant features. As a result, 
more and deeper image feature information can be captured by the 
NAM-YOLO v7 network embedded in the N-ELAM module, thus 
enabling the localization and capture of fish with SVC symptoms in 
different postures during swimming. 

NAM is a redesigned attention mechanism based on a convolutional 
block attention module (CBAM). The overall structure of the NAM is 
shown in Part a of Fig. 3. As shown in Part a of Fig. 3, the channel 
attention module and the spatial attention module are two submodules 
of the NAM-based feature augmentation module. The specific structure 
of the channel attention mechanism submodule is shown in Part b of 
Fig. 3. In the channel attention sub-module, the batch normalization 
(BN) layer is used to implement a normalized redistribution of input 
features, as shown in Eq. 5: 

Bout2 = BN(Bin) = γ
Bin − μBc̅̅̅̅̅̅̅̅̅̅

σ2
Bc
+

√
ν
+ βc (5)  

where μBc 
and σBc are the mean and standard deviation of the input 

features, respectively. γ and βc are affine transformation parameters, 
representing scale and displacement, respectively. Bin and Bout1 repre
sent the input eigenvalues and the output eigenvalues after channel 
enhancement respectively. ν represents the residual value. After the 
features extracted from the image are fed into the attention submodule, 
the output features are shown in Eq. 6: 

MC = sigmoid
(
WγBout1

)
(6)  

where Wγ = γi/
∑

j=0γi is the output weight of the network. 
The specific structure of the spatial attention mechanism submodule 

is shown in Part c of Fig. 3. In the spatial attention submodule, the pixel 
normalization layer is used to achieve a balance of weights between 
different pixel points and for the enhancement of different features. 
Thus, the output of the image extracted features after this layer is shown 
in Eq. 7: 

Bout2 = BNS(Bin) = λ
Bin − μBs̅̅̅̅̅̅̅̅̅̅

σ2
Bs
+

√
ε
+ βs (7)  

where μBs 
and σBs are the mean and standard deviation of all pixels of the 

input respectively. λ and βs are affine transformation parameters in the 
pixel normalization layer, representing scale and displacement, respec
tively. Bin and Bout2 represent the input eigenvalues and the output ei
genvalues after channel enhancement respectively. ε represents the 
residual value. Finally, the output of the extracted feature maps in the 
image based on the spatial attention submodule is shown in Eq. 8: 

Ms = sigmoid
(
WγBout2

)
(8)  

where Wλ = λi/
∑

j=0λi is the weight value of the output pixel. 
Finally, NAM is combined with the ELAN network in YOLO v7 and 

forms the improved N-ELAN network, as shown in Part d of Fig. 3. The 
NAM module is inserted into the original ELAN network to achieve the 
weighting of the feature maps extracted from the image in both channel 
and pixel dimensions. Based on the weighted features, the model can 

Fig. 3. Illustration of the N-ELAN structure. (a) Overall structure of the NAM module; (b) channel attention submodule; (c) spatial attention submodule (d) inte
gration of N-ELAN. 
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better achieve the position discrimination of the fish with SVC symptoms 
during the movement and improve its tracking accuracy. 

2.5.3. Calculation of the loss function 
The loss function was used to calculate the gap between the pre

dicted area and the real area of the fish with SVC symptoms based on the 
proposed NAM-YOLO v7 network implementation. During the network 
training process, calculations based on the loss function can bring the 
output as near to the true value as feasible, leading to more accurate 
predictions. However, the loss function in the original YOLO v7 network 
is affected by the aspect ratio of the detection frame during the 
computation process, causing difficulties in its optimization. Due to the 
large differences between the morphology and position of different in
dividuals during the swimming process of the fish, it is difficult for the 
existing YOLO v7 network to achieve precise positioning, which affects 
the accuracy of tracking. At the same time, there may be a certain degree 
of overlapping of bit positions between fish in different postures, causing 
them to be difficult to detect well by the existing YOLO v7 network (Ma 
and Xu, 2023). Therefore, the loss function CIoU used in the original 
YOLO v7 network is replaced by the new loss function MPDIoU based on 
the minimum point distance. 

The computational procedure of MPDIoU is as follows: for detection 
frames A and B, assume that 

(
xA

1 , yA
1
)

and 
(
xA

2 , yA
2
)

denote the upper-left 
and lower-right corner point coordinates of A, respectively. 

(
xB

1 , yB
1
)

and 
(
xB

2 , yB
2
)

denote the upper-left and lower-right corner point coordinates 
of B, respectively. The parameters w and h are denoted as the width and 
height of the input image. The square of the distance between the pre
diction box and the gound truth box at upper-left corner point is 
calculated as follows: d2

1 =
(
xB

1 − xA
1
)2

+
(
yB

1 − yA
1
)2 and the square of the 

distance between the prediction box and the gound truth box at the 
upper-left corner point is calculated as follows: d2

2 =
(
xB

2 − xA
2
)2

+
(
yB

2 − yA
2
)2. 

Finally, the MPDIoU is obtained by 

MPDIoU =
A ∩ B
A ∪ B

−
d2

1

w2 + h2 −
d2

2

w2 + h2 (9) 

To make each bounding box Bprd =
[
xprd, yprd,wprd, hprd

]T 
predicted by 

the model converge to its corresponding true labelled bounding box 
Bgt =

[
xgt, ygt,wgt , hgt

]T, the minimal loss function is established as 
follows: 

L = min
Θ

∑

Bgt∈Bgt
L

(
Bgt,Bpred|Θ

)
(10)  

where Bgt denotes the set of real labelled bounding boxes. The parameter 
Θ represents the regression parameter of the deep model. The loss 
function is defined as LMPDIoU = 1 − MPDIoU. All the parameters of the 
loss function of the regression of the bounding box can be determined by 
four coordinates as follows: 

|C| =
(
max

(
xgt

2 , x
prd
2
) )

− min
(
xgt

1 , xprd
2
)
×
(
max

(
ygt

2 , y
prd
2
) )

− min
(
ygt

1 , yprd
1
)

(11)  

where |C| denotes the area of the smallest outer rectangle covering Bgt 

and Bprd. 
The center coordinates of the real label bounding box are calculated 

as xgt
c =

(
xgt

1 + xgt
2
)/

2 and ygt
c =

(
ygt

1 + ygt
2
)/

2. The center coordinates of 

the predicted label bounding box are calculated as xprd
c =

(
xprd

1 + xprd
2

)/

2 and yprd
c =

(
yprd

1 + yprd
2

)/
2, where wgt and hgt represent the width and 

height of the real label bounding box. wprd and hprd represent the width 
and height of the predicted label bounding box. In addition, wprd and 
hprd are calculated as wprd = xprd

2 − xprd
1 and hprd = yprd

2 − yprd
1 , respec

tively. The coordinates of the upper left and lower right corner points 

can be used to determine all of the factors taken into account in the 
existing loss functions. These factors include the non-overlapping area, 
the distance from the center point, and the deviation of the width and 
height, demonstrating how the algorithm could streamline the calcula
tion process and take many factors into account. 

3. Results 

3.1. Training configuration of the NAM-YOLO v7 model 

The SVCV infection experiment and protocols were inspected and 
approved by the Ethics Committee of Hunan Normal University (No. 
2023–047). From Section 2.3, a total of 1814 images were used for 
model training and testing of fish with SVC symptoms. All the acquired 
images are divided into a training set and a test set. Seven healthy fish 
and two fish injected with SVCV were included in each image. 

The key parameters and environment settings during training of the 
NAM-YOLO v7 network are shown in Table 1. The training set of the 
model consists of 1450 images and the testing set consists of 364 images. 
The images in the training set were fed into the NAM-YOLO v7 model for 
training after mosaic data enhancement (Zhou et al., 2023). In the 
training of the NAM-YOLO v7 model, the batch size is set to 16. The 
maximum number of iterations was set to 200. The loss function is 
MPDIoU combined with BCEWithLogits. The resolution of the input 
image for the NAM-YOLO v7 network is 1080× 1080. The values of 
IOU_thres and Conf_thres are set to 0.65 and 0.001, respectively. Two 
NVIDIA GTX 3090 GPUs were used in the training process, under the 
environment of CUDA 11.0 and cuDNN 8.0.3. The code implementation 
of our proposed method was realized by Python 3.8. 

3.2. Enhanced image based on Auto-MSRCR 

The captured images of the fish while swimming are enhanced based 
on the automatic MSRCR algorithm, which is shown in Fig. 4. As shown 
in Fig. 4, the visibility of different individuals in the fish school in the 
image is improved. In aquatic environments, changes in light conditions 
may result in a decrease in the contrast between a fish target exhibiting 
SVC symptoms and its surroundings. Based on the automatic adjustment 
of the enhancement factor in the Auto-MSRCR algorithm, the acquired 
images are better adapted to different lighting conditions. The enhanced 
contrast of the images reduce the effects of illumination. In addition, fish 
with SVC symptoms can be further enhanced in terms of color signifi
cance based on the Auto-MSRCR algorithm, thus improving the accuracy 
of their detection. 

In particular, when the images show aggregations of healthy and 
virus-infected individuals in fish populations, their similar colors make 
it difficult to distinguish between the two types of targets. The different 
categories of targets can be strengthened based on the hierarchical 
reinforcement automatically achieved by the adopted Auto-MSRCR al
gorithm, thus improving the precision detection of SVC-infected fish in 
the fish population. 

Table 1 
The hyperparameters and the training details.  

Implementation 
details 

Parameter name Selected value 

Training 

Batch size 16 
Max-epochs 200 
Loss_function MPDIoU + BCEWithLogits 
Input_size 1080 × 1080 
Label_smoothing True 
IOU_thres 0.65 
Conf_thres 0.001 

Environment 

GPU 2 Nvidia RTX 3090 GPUs 
Platform Python 3.8 
Implementation 
tools 

PyTorch 1.7.1, CUDN 11.0, cuDNN 
8.0.3  
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3.3. Experimental and prediction results 

3.3.1. Evaluation indicator 
The accuracy of the detection for fish infected with SVC symptoms 

will be evaluated based on several indicators, such as the precision (P), 
recall (R), F1 score, and mean average precision (mAP). Precision is the 
probability of being identified as a diseased fish in the diseased samples. 
It represents the accuracy of the prediction result of a positive sample. 
Recall is the probability of being determined as a diseased fish by the 
model among all diseased fish. It represents the overall prediction pre
cision. The F1 score is introduced to achieve a balance between accuracy 
and recall. AP stands for the average precision for normal fish or fish 
with SVC symptoms. mAP represents the mean of the AP values of 
normal fish and fish with SVC symptoms by integration. The precision, 
recall, F1 score and mAP are calculated as follows: 

precision =
TP

TP + FP
(12)  

recall =
TP

TP + FN
(13)  

F1 Score =
2 × precision × recall

precision + recall
(14)  

mAP =
1
N

∑N− 1

i=0

(∫ 1

0
Pi(R)dR

)

(15)  

where true positive (TP) means that the sample is classified as positive 
and correctly categorized. The false negative (FN) means that the sample 
is classified as negative but incorrectly categorized. The false positive 
(FP) means that the healthy fish sample is classified as positive. Pi(R) is 
the precision value at which the target of class i is recognized. N denotes 
the number of categories of targets to be detected. 

3.3.2. Experimental results 
Due to the large amount of data needed for the training of the 

detection model, a 5-fold cross-validation approach is used to further 
enable the full utilization of the training set and the selection of the 
model with the best performance. In 5-fold cross-validation, 1450 im
ages in the training set are divided into five smaller image sets, where 
each smaller dataset contains 290 independent images. Subsequently, 
the detection model for fish with SVC symptoms was trained using a 
combination of four smaller datasets as a training dataset. Meanwhile, 
the remaining one smaller dataset will be tested after the network 
completes every ten training epochs to obtain its prediction accuracy 
and loss function value. Based on this cross-validation approach, a 
detection network with optimal performance was obtained by setting a 
certain range of hyperparameter values. The remaining 364 images were 
used as an independent test set for the trained model. The set of optimal 
key hyperparameter values was obtained by setting a certain range of 
hyperparameter values and sampling tests based on a fixed step size. To 

prevent overfitting of the training data, early termination of model 
training is allowed if the mAP values on the validation dataset do not 
improve. After 10 rounds of elapsed time, if the mAP on the validation 
set is not improved or even affected, the training is terminated early. 

The evaluation metrics of the proposed NAM-YOLO v7 network after 
training based on the training sets are shown in Fig. 5. The value of the 
F1-Score is between 0 and 1, with closer to 1 indicating a better balance 
of precision and recall in the model. A smaller loss value means that the 
model is more accurate in localizing SVCV-infected fish. The plot of 
precision and recall shows the model performance under different pre
cisions and recalls, which are used to filter the optimal model. As shown 
in Fig. 5, we obtained the optimal target detection model after 200 it
erations based on a 5-fold cross-validation process. The detection ac
curacy of fish with SVC symptoms was 97.3%, the recall was 93.8% and 
its mAP was 94.6% based on the optimal network obtained from 
training. According to the above results, our proposed model achieves 
high detection accuracy, while its detection results can cover all the fish 
with SVC symptoms as much as possible. 

To further validate the performance of the proposed NAM-YOLO v7 
model, we compare it with other target detection models based on an 
independent validation set, including YOLOv5s, YOLOv6, YOLOX, 
YOLOR and YOLO v7. These models used for comparison were all based 
on the same training set using a 5-fold cross-validation method to 
complete the training. These models are tested for their performance 
based on an independent test set, using precision, recall and detection 
time as evaluation metrics. The results of the performance evaluation of 
the obtained models are shown in Table 2. As shown in Table 2, our 
proposed NAM-YOLO v7 network applied to detect SVCV-infected fish in 
the images acquired by the fish population achieved the best perfor
mance with 97.3% prediction accuracy and 93.8% recall. The time to 
complete the detection of an image based on the NAM-YOLO v7 model is 
only higher than that of the YOLO v6 network, but its performance is 
much better. The above results show that the proposed NAM-YOLO v7 
network applied to the detection of fish with SVC symptoms in the fish 
population has optimal performance and good detection speed. 

An ablation experiment was performed to fully demonstrate the 
usefulness of our proposed enhancement strategy in the NAM-YOLO v7 
network (Wang et al., 2019). The ablation experiment is a set of ex
periments in which components of the NAM-YOLO v7 are removed to 
measure the impact of these components on the performance of the 
network (Zhu et al., 2023a, 2023b). The results of the ablation experi
ments are shown in the last three rows of Table 2. As shown in Table 2, 
after adding the NAM module, the accuracy increased by 1.7%, the 
recall increased slightly by 0.3%, and the detection time per each image 
decreased. The initial YOLO v7 network improves its accuracy by 1.7% 
and its recall by 0.3% after the addition of the NAM module. This is 
mainly because the original YOLO v7 network has been enhanced by the 
addition of the NAM module to better extract the deep image features of 
the SVC-infected fish for its discrimination. After replacing the original 
loss function with MPDIoU in the network, the accuracy is increased by 
1.1% and the recall is increased by 0.7%. This result suggests that the 

Fig. 4. Enhanced image based on the Auto-MSRCR algorithm: (a) original image; (b) image after data enhancement.  
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application of MPDIoU as a loss function in the proposed NAM-YOLO v7 
network can enhance the recognition ability of the model when fish with 
SVC symptoms overlap with healthy fish. Compared with the original 
YOLO v7 network, the proposed NAM-YOLO v7 network achieves a 
2.8% improvement in accuracy and a 1% improvement in the recall rate 
for the detection of fish infected with SVCV. These results amply 
demonstrate the effectiveness of these improvement strategies that we 
have proposed. 

Finally, based on the proposed NAM-YOLO v7 network combined 

with machine vision techniques, fish with SVC symptoms were accu
rately identified and localized (Fig. 6). SVCV-infected fish showing 
symptoms were labelled in the red rectangular box, while other healthy 
fish were labelled in the blue rectangular box. Although the differences 
in shape and size between healthy fish and fish with SVC symptoms were 
small, the posture while swimming and the color of the hemorrhage 
demonstrated difference between the two types of fish. The images of 
two different types of fish while swimming are captured by machine 
vision methods so that these differences are converted into features on 
the image thus captured and extracted by our proposed NAM-YOLO v7 
network. Based on the captured features, fish with SVC symptoms can be 
discriminated and precisely located. Although the scattering of light on 
the water surface and fish feces introduces a certain degree of interfer
ence to the detection process, more discriminative features can be 
adaptively extracted by the NAM module in the network and reduce the 
effect of these interference to a certain extent. 

Gradient-weighted class activation mapping (Grad-CAM) was used 
(Zhu et al., 2023b) to explore the mechanism by which our proposed 
NAM-YOLO v7 network enables the detection of fish with SVC symp
toms. The output of the last layer of the network during the detection of 
fish with SVC symptoms based on the NAM-YOLO v7 network in the 
experiment shown in Fig. 6 was used to reveal how it works, as shown in 
Fig. 7. From the results presented in Fig. 7, different categories of fish 
have the highest weight of features in their torso part while swimming, 
and the extracted features are basically concentrated on the body and 

Fig. 5. The training results of our proposed NAM-YOLO v7 network: (a) the results of the indicator F1 score during the training process; (b) the value of the loss 
function during the training process; (c) the relationship between accuracy and recall during the training process; (d) variation curve of the ratio of accuracy to recall 
during the training process. 

Table 2 
Performance comparison between different object detection models.  

Detection models Precision 
(%) 

Recall 
(%) 

Inference per image 
(ms) 

YOLO V5s network 91.4 90.3 1243 
YOLO V6 network 93.2 91.7 138.8 
YOLOX network 94.2 92.5 317 
YOLOR network 91.9 92.1 1531 
YOLO v7 network 94.5 92.8 218 
YOLO v7 + NAM Attention 96.2 93.1 184 
YOLO v7 þ NAM 

Attention þ
MPDIoU (NAM-YOLO 
v7) 

97.3 93.8 172  
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head of the fish. Combining the results in Fig. 6 and Fig. 7, it can be seen 
that the NAM-YOLO v7 network based on our training can effectively 
extract the key features of the fish during movement to achieve 
discrimination and tracking of the fish with SVC symptoms. These re
sults demonstrate the modified modules in our model are indispensable 
to focus on the essential part in the images, which allows for the reali
zation of precisely detecting the specific SVCV-infected fish. 

Finally, the trained model was deployed and integrated into a 
monitoring system for the fish farming process, enabling online moni
toring and tracking of fish with SVC symptoms during the farming 
process, as shown in Fig. 8. The designed monitoring software was 
developed based on the PyQt5 platform, which enables the counting and 
tracking of fish with SVC symptoms in the aquaculture farms. The 
number of fish with SVC symptoms in the picture is displayed at the 
bottom of the software. In the future, the application and dissemination 
of the developed system in the actual freshwater fish farming process 
should be feasible. It will be very convenient to carry out a surveillance 
plan with many devices equipped with video capture and online data 

sharing. A data analysis center can be established to detect the infected 
fish with the further optimized neural network model. 

4. Discussion 

The possible outbreaks of SVC are very concerning. Hence, SVC is 
listed as one of the OIE notifiable diseases. Most existing molecular 
biology testing methods for SVC surveillance depend on professional 
operators and biofacilities (Shivappa et al., 2008; Clouthier et al., 2021). 
The procedures for these tests, such as PCR/qPCR, are normally time and 
labor-intensive, compared to vision-based detection techniques. Mo
lecular biology testing methods with high precision are indispensable for 
inspecting at essential transmission routes such as importing sites of fish 
outside of the country. However, small farms may suffer from insuffi
cient trained persons or facilities to perform biological tests. To lay a 
foundation for a more convenient and cost-effective preventive sur
veillance system, this work aims to develop a convenient method for 
rapid detection using novel approaches. The images are utilized to 

Fig. 6. Detection of target fish with SVC symptoms using the NAM-YOLO v7 network. The red anchor boxes indicate the fish with SVC symptoms detected by the 
CNN. The green anchor boxes indicate the fish without SVC symptoms. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 7. Grad-CAM plot derived from the prediction layer of NAM-YOLO v7 network. The darker the color, the greater the value and the more important the feature 
information indicated. 
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detect the SVCV-infected fish after enhancement as datasets utilized by 
an improved YOLO v7 network. 

A good dataset is the preliminary requirement to develop a high- 
precision target detection neural network model (Zhao et al., 2021). 
Due to the limitation of currently available datasets in detecting fish 
with SVC symptoms, this study experimentally collected the data by 
recording SVCV-infected and healthy zebrafish. The images for the 
neural network were then obtained from the video by frame-splitting 
and filtering. The labeling of the dataset is also critical to provide key 
information such as the location and category of the target in the images. 
Despite the difficulty brought by the overlapping or occlusion of fish 
during data acquisition, as many targets as possible were labelled in 
order to provide sufficient training data for the network. A total of 1814 
images were extracted and over 10,000 targets were identified. Under
water videos or image recordings can be affected by a variety of factors, 
such as water refraction, scattering, and color attenuation, leading to 
image distortion, blurring, and color distortion (Zhao et al., 2021). Thus, 
Auto-MSRCR is developed for data enhancement to improve image 
quality. In addition, to prevent the network from learning irrelevant 
features, such as fish orientation, we introduce mosaic data enhance
ment, including updown and left-right flipping, to ensure that the 
detection by the model is less compromised by the collected lower 
quality images. The data enhancement lays a foundation for the feasible 
and efficient application of our neural network in precisely detecting the 
SVC symptoms. Also, the data enhancement algorithm can be migrated 
or adopted in detecting other fish diseases by machine vision technol
ogies, which can benefit related studies and applications in the similar 
fields. 

Several excellent models have been proposed and applied to fish 
aquaculture. The YOLO series models were adopted in real-time fish 
monitoring (Hu et al., 2021; Wang et al., 2023). In this study, a target 
detection network based on YOLO v7 was introduced as a base model 
and used to implement the detection process of fish with SVC symptoms. 
At the same time, NAM modules are added to the YOLO v7 network and 
combined to form an N-ELAN structure thus enabling the enhancement 

of sensitive features in the image (Zhao et al., 2021; Jalal et al., 2020; Hu 
et al., 2018). The weights of different channels in the image can be 
adjusted based on the NAM module according to the importance of 
different channel information to enable useful features to be further 
extracted, thus improving the detection accuracy of fish with SVC 
symptoms. In addition, the introduction of the NAM module can further 
suppress some meaningless image features, thus reducing the compu
tation of the model and decreasing the detection time of a single image. 
By replacing the original CIOU loss function in YOLO v7 with the 
MPDIoU loss function, the detection error due to the difference in the 
aspect ratio of the individuals in the fish population was eliminated to 
some extent. At the same time, the MPDIoU loss function was used to 
reduce the detection error of the model due to the overlapping of in
dividuals when the fish were aggregated. This is because the MPDIoU 
function solves the problem better by considering the minimum distance 
in the calculation process. Therefore, the same aspect ratio is not 
restricted during the optimization process. The high precision and high 
recall rate of our model demonstrated the effectiveness compared to 
other established models (Table 2). In the aquaculture farms, the 
detection error must be exaggerated by more complicated environment. 
Hence, the integrated module and updated loss function will be inevi
table to guarantee the detection accuracy and facilitate the following 
realistic applications. 

Based on the above improvement strategies, our proposed NAM- 
YOLO v7 network achieves the best performance compared to other 
target detection networks (e.g., YOLO v5s, YOLO v6, YOLO X, YOLO R, 
and YOLO v7) (Hou et al., 2021; Li et al., 2023). Based on our designed 
NAM-YOLO v7 network, the accuracy and recall of achieving the 
detection of fish with SVC symptoms while swimming are 97.3% and 
93.8%, respectively. Its detection time for a single image is only 172 ms. 
Meanwhile, an ablation experiment shows that our proposed improved 
strategy effectively enhances the performance of the target detection 
network applied in the detection of fish with SVC symptoms. Experi
ments using Grad-Cam showed that the model succeeded in focusing its 
attention highly on diseased fish, demonstrating its accuracy and 

Fig. 8. SVC detection and counting system developed using PyQt. On the left is the image captured by the camera in real time, and on the right is the image that is the 
result of the detection. The number of fish with SVC symptoms in the picture is displayed at the bottom of the software. 
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robustness in identifying fish with SVC symptoms. These results fully 
demonstrate that our proposed method of machine vision combined 
with a trained NAM-YOLO v7 network can effectively achieve online 
detection of fish with SVC symptoms during freshwater fish farming. 
This technique is essential for the rapid detection and isolation of 
potentially infected fish so that appropriate measures can be taken to 
contain or cut off transmission. 

Although we realized the identification of fish with SVC symptoms, 
our proposed method suffered from some limitations as a preliminary 
investigation. The datasets collected in this study do not cover the SVCV 
infection of different types, ages and sizes of fish. More datasets need to 
be collected to make the model more widely applicable. Second, the 
dataset for the neural network detection method is based on the image 
format extracted from the video stream. Some features of fish behaviors 
may be limited. In addition, the labeling of images before the training of 
the object detection model is very time-consuming. Weakly supervised 
or unsupervised models may be adopted to achieve reliable detection 
under the circumstances of limited data labeling (Xie et al., 2021; Bar 
et al., 2022). 

Surveillance is of great significance in warning and containing the 
epidemic diseases. In this study, we developed a CNN-based vision 
technique for SVC detection. The neural network is established based on 
YOLOv7 network. By integrating with NAM Attention mechanism and 
MPDIoU, the detection precision and computation cost are improved 
than other state-of-art detection algorithms in SVC detection. The target 
loss in detection is minimized. The ablation experiment demonstrates 
the enhancement of these modules. The output heat map of the NAM- 
YOLOv7 network by Grad-Cam illustrate the CNN is focusing on the 
expected fish targets instead of other insignificant area. Overall, the 
experimental testing datasets demonstrate that this NAM-YOLOv7 
network achieved the goal of rapid and accurate detection of fish with 
SVC symptom, which could provide a very efficient and cost-effective 
method to serve a broader disease surveillance plan in the future. 
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