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Germplasm innovation plays a critical role in fish genetic breeding. In this study, we obtained an all-female
hybrid fish (AFWR) by integrating the technique of gynogenesis, distant hybridization and sex reversal. We
conducted analyses of AFWR in terms of its morphological traits, chromosomal numbers, DNA content, gonadal
development, muscle nutrition, and growth characteristics. The results showed that the morphological charac-
teristics of AFWR were not significantly different from those of its original parents (WCC and RCC); AFWR were
diploid with 100 chromosomes; the ovarian of AFWR was developing normally and produced mature egg during
the breeding season; the muscle of AFWR had higher protein content and lower moisture compared to WCC and
RCC, and the delicious amino acids content of AFWR was significantly higher than that of WCC. Furthermore,
AFWR exhibited rapid growth and showed muscle hypertrophy and hyperplasia than WCC and RCC. Analyses of
muscle transcriptomes showed that 8698 and 4619 differentially expressed genes (DEGs) were identified be-
tween AFWR and RCC, AFWR and WCC, respectively. Among the DEGs, growth-related genes were mainly
enriched in insulin signaling pathway, TGF-beta signaling pathway, mTOR signaling pathway. Finally, twelve
candidate genes for fast growth of AFWR were selected and identified by RT-qPCR. This research provided new
scheme for the creation of new fish germplasm and will beneficial for the study of fish growth characteristics.

1. Introduction

High-quality germplasm is a driving force for fisheries development,
breeding technology is the key to germplasm creation (Chen et al.,
2023). Various fish breeding techniques have been utilized in the cre-
ation of fish germplasm, such as hybridization, gynogenesis, sex-
controlled breeding (Liu et al., 2021b; Wang et al., 2019). Distant hy-
bridization can result in phenotypic and genotypic changes in offspring
by integrating the genomes of both parents. (Liu et al., 2022). Many
hybrid fishes exhibiting heterosis have been widely utilized in aqua-
culture (Liu et al., 2018; Liu et al., 2020). Gynogenesis includes artificial
gynogenesis and natural gynogenesis, which has been widely used in the
improvement of economic and genetic characteristics of fishes (Arai,
2001a, 2001b). In recent years, gynogenetics has been applied in crucian
carp (Carassius auratus) (Luo et al., 2011), common carp (Cyprinus car-
pio) (DELSHAD et al., 2005), grass carp (Ctenopharyngodon idella) (Wang
et al.,, 2022), blunt snout bream (Megalobrama amblycephala) (Gong

* Corresponding authors.

et al., 2019), mrigal carp (Cirrhinus mrigala) (Li et al., 2023), mandarin
fish (Siniperca chuatsi) (Zhong et al., 2024), largemouth bass (Micropterus
salmoides) (Wu et al., 2023), silver carp (Hypophthalmichthys molitrix)
(Zou GuiWei et al., 2004), Lanzhou catfsh (Silurus lanzhouensis) (Li et al.,
2022), etc. Feeding 17-a-methyltestosterone (MT) is an important way
to achieve sex reversal in fish (Sun et al., 2006). In 1968, researchers
used MT to achieve sex reversal in goldfish (Yamamoto and Kajishima,
1968). In XY sex-determined fish (such as crucian carp), all-female
offspring can be obtained by artificial gynogenesis (Wen et al., 2020).
However, due to the damage of eggs (cold or heat shocks) during the
artificial gynogenesis, the mortality of offspring is high, which limits the
practicality of artificial gynogenesis in large-scale fish breeding (Luo
et al., 2011). Therefore, mating the female fish from the artificial gy-
nogenesis with sex reversed male fish (genetically female fish) from the
sex reversal is an effective method to create all-female fish on a large-
scale.

Growth is an important economic trait of aquaculture. The faster
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Fig. 1. Breeding strategy of AFWR. (A) the AFWR was obtained by integrating the technique of gynogenesis, distant hybridization and sex reversal, (B) the
appearance of GWCC, RGRCC and AFWR. RCC: red crucian carp, GRCC: gynogenetic red crucian carp, RGRCC: sex reversal GRCC, WCC: white crucian carp, GWCC:
gynogenetic white crucian carp, AFWR: all-female hybrid fish, BSB: blunt snout bream, MT: 17-a-methyltestosterone. Bar = 5 cm. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Countable traits and the ratios of measurable traits of AFWR, WCC and RCC?.

Fish type Countable traits Measurable traits

LS ULS LLS DF ABF ANF WL / BL BL / BH BL / HL HL / HH CPL / CPH
AFWR 29-31 6-7 6-7 III + 19-20 9-10 I + 6-7 1.22 +0.01 2.18 £ 0.03 3.71 £0.15 1.20 £ 0.05 0.82 £ 0.01
WwCC 32-34 6-8 5-7 III + 18-20 8-10 III + 6-7 1.24 + 0.05 2.21 £0.13 3.71 £0.26 1.19 + 0.04 0.85 + 0.03
RCC 28-30 5-6 6-7 III + 18-20 8-9 I + 6-7 1.23 + 0.03 2.20 £ 0.14 3.72 £ 0.20 1.18 + 0.06 0.80 + 0.02

Note: a Mean value + SD. The abbreviations in the table respectively represent: LS, lateral scales. ULS, upper lateral scales. LLS, lower lateral scales. DF, dorsal fins.
ABF, abdominal fins. ANF, anal fins. WL / BL, whole length / body length. BL / BH, body length / body height. BL / HL, body length / head length. HL / HH, head length

/ head height. CPL / CPH, caudal peduncle length / caudal peduncle height.

growth of fish means that it can shorten its farming time, save farming
costs, and ultimately increase farming production and economic bene-
fits. In fish, muscle weight is the primary determinant of body weight.
Therefore, the characteristics of fast growth can be analyzed by
detecting the development of muscle fibers and the protein and fat
content of muscle (Liu et al., 2024). Many studies have indicated that
fish growth is mainly affected by environment, genes, and the interac-
tion between genes and environment (Lugert et al., 2016). Environment
is the external factor and gene is the internal factor of growth trait
regulation (Yin et al., 2020). Growth is a quantitative trait controlled by
multiple genes, it is essential to identify major genes and utilize them in
breeding programs for enhancing growth traits. High-throughput
sequencing technology has shown strong advantages in the screening
of growth-related candidate genes (Ren et al., 2016). Many key genes
related to growth had been identified by high-throughput sequencing
combined with gene editing techniques (Liu et al., 2019b; Liu et al.,
2024; Moran et al., 2024).

In previous studies, we obtained the hybrid fish (WR) by crossing
white crucian carp (Carassius cuvieri, WCC, @) with red crucian carp
(Carassius auratus red var., RCC, @), WCC and RCC classified into
different species in the genus of Carassius; and an improved fish (WR-II)
was obtained by back-crossing of WR and WCC (Liu et al., 2019a). WR
and WR-II have been widely used in China, because of their heterosis
traits. Since female WR was needed in the process of creating WR-II, we
want to obtain an all-female WR to improve production efficiency. In
this study, we obtained the all-female WR (AFWR) by integrating the

technique of gynogenesis, distant hybridization and sex reversal.
Through the analysis of many characters of AFWR, it is confirmed that
AFWR is a female diploid fish (2n = 100) with rapid growth and rich
nutrition. Candidate genes for rapid growth in AFWR were identified
through comparative analysis of the muscle transcriptome. This study
showed a strategy for the creation of new fish germplasm and will
beneficial for the study of fish growth characteristics.

2. Materials and methods
2.1. Generation of AFWR

WCC and RCC were collected from Hunan Normal University. The
mature ovum of WCC and RCC were stimulated by blunt snout bream
sperm inactivated through UV, the fertilized eggs were doubled with
cold shock, and the GWCC (gynogenetic white crucian carp) and GRCC
(gynogenetic red crucian carp) were obtained. The RGRCC (sex reversal
GRCC) was obtained by feeding MT (100 pg/g, 60 days) to GRCC. The
AFWR were obtained from the hybridization of GWCC and RGRCC.

2.2. Morphological traits, body weight and muscle fiber analyses

Under the same conditions, 300 fish from each species (AFWR, WCC
and RCC) were cultured separately in a 150 m? pond for 1 year. 30 fish
were randomly selected from each group to measure morphological
traits and body weight. The measurable traits and the countable traits
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Fig. 2. Ploidy and fertility of AFWR. (A) the DNA content of RCC (99.54), (B) the DNA content of AFWR (99.90), (C) the metaphase chromosome phase of AFWR, bar

= 10 pm, (D) the histology of ovaries of AFWR (stages II or III), Bar = 0.2 mm.

Table 2
Muscle proximate composition of AFWR, WCC and RCC.
Fish Moisture Fat Protein Ash Carbohydrates Energy
type (g/100 g) (g/ (g/100 g/ (g/100 g) value
100 g 100 g) (KJ/100
g) )
AFWR 72.30% 3.90 17.70° 1.80° 79.30 1669.97
WCC 75.90% 3.65 15.90%¢ 1.60¢ 78.85 1724.59
RCC 76.70° 3.70  16.70° 2.70°  76.90 1707.22

Notes: 1. The data in the table are mean values. 2. ® ® and © represent significant
differences from AFWR, WCC and RCC, respectively (P < 0.05).

Table 3
Muscle amino acid content of AFWR, WCC and RCC. (g/100 g).

Amino acid AFWR WCC RCC
Asp 1.74 1.49 1.73
His 0.52 0.53 0.71
Glu 2.48 2.15 2.42
Val 0.83 0.65 0.78
Ser 0.74 0.66 0.73
Gly 0.85 0.83 0.87
Met 0.39 0.42 0.50
Thr 0.68 0.65 0.76
Arg 0.93 0.89 1.01
Tyr 0.50 0.49 0.57
Ala 1.06 0.86 1.02
Phe 0.73 0.63 0.72
Ile 0.77 0.61 0.70
Leu 1.32 1.12 1.32
Lys 1.64 1.15 1.68
= DAA 6.13° 5.33% 6.04°
T EAA 6.36° 5.23%¢ 6.46°
= TAA 15.18° 13.13% 15.52°

Notes: 1. Data is average. 2. £ DAA: Total delicious amino acids; 3. £ EAA: Total
essential amino acids; 4. = TAA: Total amino acids. 5. *  and © represent sig-
nificant differences from AFWR, WCC and RCC, respectively (P < 0.05).

can refer to previous study (Liu et al., 2019a). Furthermore, 5 fish of
each species were selected for paraffin section of muscle. The method of
muscle fiber analysis can be referred to the previous report (Zhong et al.,
2016).

2.3. Ploidy level and gonadal structure analysis

The ploidy level of AFWR was identified by the chromosome number
and the DNA content. DNA content was detected by the flow cytometer
(Partec) (10 samples of each fish). The number of chromosomes in
AFWR was confirmed using a chromosome count test of kidney tissue
(10 fish). The gonadal development of AFWR was detected by histo-
logical sectioning, and 10-month old AFWR was used for sampling. The
methods of chromosome counting and gonad sectioning can be refer-
enced from previous studies (Liu et al., 2019a).

2.4. Muscle nutrient

The protein, fat, moisture, ash, and amino acids of AFWR, WCC and
RCC were detected. Protein content was detected by Kjeldahl method,
fat content was detected by Soxhlet extraction method, moisture content
was detected by vacuum freeze-drying, amino acids content was
detected by high-performance liquid chromatograph (Agilent).

2.5. Muscle transcriptome analysis

9 samples (3 AFWR, 3 WCC and 3 RCC) were used for transcriptome
sequencing. The RNA was utilized for sequencing library construction
and sequencing. Following the extraction of clean reads, comparative
analysis was performed using the RCC genome as the reference. DEGs
with padj<0.01 and |log2foldchange| > 1.5 were identified using the
DESeq2R software package in the AFWR vs. WCC, and AFWR vs. RCC
comparisons. The growth-related genes were obtained by GO and KEGG
analysis.
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Fig. 3. Muscle fiber analysis of AFWR. (A) Paraffin sectioning of RCC, WCC, and AFWR, Bar = 100 pm, (B) the mean area of fibers,(C) the total number of fibers, (D)
the total area of fibers. a, b, and c represent significant differences (P < 0.05).
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Fig. 4. Identification of DEGs and clustering analysis of DEGs. (A) DEGs in the AFWR vs. RCC, (B) DEGs in the AFWR vs. WCC, (C) detailed hierarchical clustering of
DEGs in AFWR vs. RCC, (D) detailed hierarchical clustering of DEGs in AFWR vs. WCC.
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Fig. 5. GO and KEGG analysis of DEGs. (A) GO clustering of DEGs in AFWR vs.
AFWR vs. RCC, (D) KEGG clustering of DEGs in AFWR vs. WCC.

2.6. Real-time quantitative PCR

Total RNA and cDNA were obtained from muscle by the commercial
kit (Omega). The protocol was consistent with previous reports (Liu
et al., 2019b), with three biological replicates analyzed for each sample,
the primers are listed in Table S1. In hybrid fishes, the expression levels
of genes were represented by the total expression of the homeolog pair.

3. Results
3.1. Creation of AFWR and its morphological traits

AFWR was obtained by integrating the techniques of gynogenesis,
distant hybridization and sex reversal (Fig. 1A). The GWCC was

T T T
0 0.01 0.02 0.03 0.04

Gene ratio

RCC, (B) GO clustering of DEGs in AFWR vs. WCC, (C) KEGG clustering of DEGs in

obtained by gynogenesis, the RGRCC was obtained by gynogenesis and
sex reversal, and the AFWR was obtained by the hybridization of GWCC
and RGRCC (Fig. 1B). There was no significant difference (p > 0.05)
between AFWR and its original parents for all countable traits and all
measurable traits (Table 1). Some of the measurable traits of AFWR were
intermediate between original parents, such as lateral scales, upper
lateral scales, and abdominal fins (Table 1).

3.2. Ploidy and fertility of AFWR

The DNA contents of RCC (used as control) and AFWR were shown in
Fig. 2A and Fig. 2B. The ratio of DNA content of AFWR to RCC is 1.00
(99.90/99.54 = 1.00), indicating that AFWR is a diploid fish. We
detected 100 metaphase cell division phase of AFWR and confirmed that
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Fig. 6. Clustering of growth-related DEGs. The red indicates up-regulated, the
green indicates down-regulated. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

AFWR has 100 chromosomes (Fig. 2C, Table S2) (2n = 100). At 10-
month old, the ovaries of AFWR develop normally and were mainly
composed of oocytes at stages II or III (Fig. 2D). During breeding season,
AFWR can produce mature eggs.

3.3. Muscle nutrient of AFWR

The results of muscle nutrient for AFWR, WCC and RCC were pre-
sented in Tables 2 and 3. The moisture of AFWR (72.30 g/100 g) was
significant lower than those of WCC (75.90 g/100 g) and RCC (76.70 g/
100 g) (p < 0.05), the protein of AFWR (17.70 g/100 g) and RCC (16.70
g/100 g) were significant higher than that of WCC (15.90 g/100 g) (p <
0.05), the ash of AFWR (1.80 g/100 g) and WCC (1.60 g/100 g) were
significant lower than that of RCC (2.70 g/100 g) (p < 0.05), the total
delicious amino acids, total essential amino acids, and total amino acids
of AFWR (6.13 g/100 g, 6.36 g/100 g, 15.18 g/100 g) and RCC (6.04 g/
100 g, 6.46 g/100 g, 15.52 g/100 g) were significant higher than those
of WCC (5.33 g/100 g, 5.23 g/100 g, 13.13 g/100 g) (p < 0.05).

3.4. Body weight and muscle fiber analysis of AFWR

The mean body weights of AFWR, WCC and RCC were 350.3 + 15.1
g, 293.2 + 10.7 g, and 269.7 + 10.6 g, respectively. The mean body
weight of AFWR was significant higher than those of WCC (16.30 %
faster than WCC) and RCC (23.00 % faster than RCC) (p < 0.05). Muscle
fiber section of AFWR, WCC and RCC was shown in Fig. 3A. The mean
fiber area of AFWR (3932.3 + 190.8 pm?) was significant higher than
those of WCC (3135.0 + 178.6 pm?) and RCC (3010.8 + 166.2 pm?)
(Fig. 3B); the total fiber number of AFWR (171.0 + 6.7) was significant
higher than those of WCC (157.0 + 3.9) and RCC (151.0 + 4.6)
(Fig. 3C); the total fiber area of AFWR (672,426.0 + 13,623.0 pmz) was
significant higher than those of WCC (492,179.0 + 10,153.0 um?) and
RCC (454,631.0 + 9685.0 um?) (Fig. 3D). In short, AFWR exhibited
rapid growth and showed muscle hypertrophy and hyperplasia than
WCC and RCC.

Aquaculture 599 (2025) 742085
3.5. Muscle transcriptome analysis of AFWR

Based on the characteristics of hypertrophy and hyperplasia of
AFWR, muscle transcriptome analysis of AFWR, WCC and RCC was
performed. We obtained 4.01 x 108 (60.23 GB) clean reads (Table S3),
the repeatability of the same fish is presented in Fig. S1. Through
transcriptome comparative analysis, we obtained 8698 differentially
expressed genes (DEGs; upregulated: 4600, downregulated: 4098) be-
tween AFWR and RCC (Fig. 4A and C), 4619 DEGs (upregulated: 1965,
downregulated: 2654) between AFWR and WCC (Fig. 4B and D).
Growth-related genes were obtained by GO and KEGG analysis of DEGs,
such as genes annotated with the terms myosin complex (GO:0016459),
actin cytoskeleton (GO:0015629), regulation of actin filament length
(GO:0030832), TGF-beta signaling pathway (ko04350), insulin
signaling pathway (ko04910), mTOR signaling pathway (ko04150),
VEGF signaling pathway (ko04370) (Fig. 5). The twelve candidate genes
(myosin light chain 4 (myl4), myogenic differentiation antigen 1
(myod1), high-temperature requirement A serine peptidase 1B (htralb),
protein kinase 2 (akt2), forkhead box O1B (foxolb), myogenin (myog),
growth hormone receptor (ghr), AKT1 substrate 1 (aktls1), myostatin b
(mstnb), vascular endothelial growth factor Aa (vegfaa), insulin-like
growth factor-binding protein 3 (igfbp3), activin a receptor type 2b
(acvr2b)) for fast growth of AFWR were selected (Fig. 6) and identified
by RT-qPCR (Fig. 7). The results of RT-qPCR verified the accuracy of the
transcriptome.

4. Discussion

Breeding technology is crucial in the development of fish germplasm
(Wang et al., 2024). Hybridization, gynogenesis, androgenesis, sex-
controlled breeding, selective breeding, gene editing and other tech-
nologies have been widely used in aquaculture (Chen et al., 2023). In
previous studies, we obtained the WR and WR-II by the distant hy-
bridization, they have the characteristics of fast growth, strong disease
resistance, high hatching rate and high fertilization rate, and they have
been widely used in fisheries (Liu et al., 2019a). Especially in recent
years, the market demand for WR-II is steadily increasing. In the pro-
duction process of WR-II, the number of eggs in 2-3 WR can correspond
to the number of sperm in one WCC. Therefore, enhancing the yield of
WR-II hinges on increasing the population of female WR. So, we want to
create an all-female WR to improve production efficiency. To obtain all-
female WR, the female WCC and sex reversed male RCC (genetically
female RCC) were needed. Utilizing a combination of artificial gyno-
genesis and sex reversal techniques is a crucial method for producing all-
female fishes (Boney et al., 1984; Nagy et al., 1981; Wu et al., 1990).
WCC and RCC belong to XY sex-determined fishes (Luo et al., 2011), so
we obtained the RGRCC by the combination of artificial gynogenesis and
sex reversal technique, and GWCC was obtained by gynogenesis. Then
the AFWR was obtained by the hybridization of GWCC and RGRCC. The
AFWR was diploid with 100 chromosomes, it exhibited typical gonadal
development and produced fully mature eggs. In short, based on the
characteristics of gynogenesis, distant hybridization and sex reversal,
the AFWR was successfully created.

Hybridization usually result in heterosis, for example, triploid fish
with fast growth and diploid hybrids with strong hypoxic tolerance were
produced by hybridization (Liu et al., 2021a; Ren et al., 2019). More and
more researches have indicated that there are some advantageous traits
in gynogenetic fish, which may be related to the heterosperm effect (Wu
etal., 2023). For example, gynogenetic mandarin fish with rapid growth
(Wu et al., 2023), gynogenetic grass carp with rapid growth and strong
disease resistance (Mao et al., 2020), gynogenetic mrigal carp with low-
temperature resistant (Li et al., 2024; Li et al., 2023). In previous study,
the WR exhibit rapid growth than WCC (10.00 % faster than WCC) and
RCC (20.23 % faster than RCC), and showed hypertrophy than WCC and
RCC (Liu et al., 2024). However, in this study, the AFWR grows 16.30 %
faster than WCC and 23.00 % faster than RCC, and AFWR showed
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Fig. 7. The relative mRNA levels of growth-related genes were detected by RT-qPCR. a, b, and c represent significant differences (P < 0.05).

muscle hypertrophy and hyperplasia than WCC and RCC. Additionally,
the muscle of AFWR displayed elevated protein and delicious amino
acids content in comparison to its parents. Based on these results and the
creation process of AFWR, we think that the advantage of AFWR may be
caused by heterosis and heterosperm effect.

Growth is an important economic trait in genetic breeding of fish, it
is a quantitative trait controlled by multiettple genes (Lugert et al.,
2016). Finding the major genes of growth can provide important theo-
retical guidance for the genetic breeding of fish. The growth advantage
of AFWR provides a good material for screening candidate genes for fast
growth. Through transcriptome comparative analysis, 8698 DEGs were
found between AFWR and RCC, 4619 DEGs were found between AFWR
and WCC. Among these DEGs, growth-related genes were mainly
enriched in insulin signaling pathway, TGF-beta signaling pathway,
mTOR signaling pathway, VEGF signaling pathway. And twelve candi-
date genes for fast growth of AFWR were selected and identified by RT-
gPCR. Of the 12 candidate genes, four (mstnb, vegfaa, igfbp3, and acvr2b)
were up-regulated in AFWR and eight (myl4, myodl, htralb, akt2,
foxola, myog, ghr, and aktls1) were down-regulated in AFWR. Mstnb,
acvr2b, myod1, myog, and myl4 regulate muscle growth and development

(Joyce, 2023; McPherron and Lee, 2002; Zanou and Gailly, 2013). Mstnb
and acvr2b are negative regulators of muscle growth. In mice, cattle and
fishes, mstnb deficiency results in muscle hypertrophy and hyperplasia,
which promotes rapid growth (Berry et al., 2002; Chisada et al., 2011;
Khalil et al., 2017; McPherron and Lee, 2002); the absence of acvr2 in
zebrafish can also cause hypertrophy and hyperplasia of muscle tissue
(Che et al., 2022). Myod1 and myog are target genes of mstnb and acvr2,
and they are positive regulators of muscle growth (Chisada et al., 2011).
In Nile tilapia and hybrid striped bass, the high expression of myod and
myog can enhance fish growth (Childress et al., 2016; Michelato et al.,
2017). Myl (myosin liLilght chain) is highly expressed in muscle tissue
and is involved in regulating energy metabolism (Wu et al., 2021). In
this study, AFWR exhibited showed muscle hypertrophy and hyperplasia
than WCC and RCC. Therefore, we speculate that the characteristics of
muscle hypertrophy and hyperplasia in AFWR may be caused by these
genes. Akt2 and akt1s1 positively regulate protein synthesis and muscle
development (Schiaffino et al., 2013). So, the high protein in AFWR
muscle tissue may be related to the high expression of akt2 and akt1s1.
Furthermore, the expression patterns of ghr (up-regulation) and igfbp3
(down-regulation) in AFWR, which have a regulatory effect on growth
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hormone (Triantaphyllopoulos et al., 2020), also promote the growth of
AFWR. In general, some key genes in AFWR that regulate muscle
growth, protein synthesis and growth hormone were activated or
inhibited to promote its growth.

In summary, we obtained an all-female hybrid fish (AFWR) by
integrating the technique of gynogenesis, distant hybridization and sex
reversal. We found that AFWR is a diploid fish with 100 chromosomes, it
is all-female and can produce mature eggs. The muscular nutritional
value of AFWR is better than that of its parents. Furthermore, AFWR
exhibited rapid growth and showed muscle hypertrophy and hyperpla-
sia than WCC and RCC. Twelve candidate genes for fast growth of AFWR
were selected and identified by RT-qPCR. The AFWR has important
application value in fish genetic breeding, it provided a new way for the
creation of new fish germplasm.
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