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To investigate the muscle quality differences and their underlying mechanisms among grass carp with different
genetic backgrounds, this study analyzed muscle quality traits, volatile metabolomics, and transcriptomic of
gynogenetic grass carp (GGC), disease-resistant grass carp (DRGC) and grass carp (GC). Compared to GC, the
muscle of GGC exhibited higher water-holding capacity, hardness, and chewiness, while DRGC displayed greater
gumminess in its muscle (P < 0.05). Using GC x GC-TOFMS analysis, a total of 2826 volatile flavor compounds
(VFCs) were identified, with significant differences observed in VFCs types and relative abundances among the
three varieties. Through multivariate statistical analysis, 296 differential VFCs were screened (VIP > 1, P <
0.05). By combining relative odor activity values (ROAVs), seven characteristic VFCs (VIP > 1, ROAV >0.1) were
further identified as potential markers for variety discrimination and quality evaluation. Transcriptomic analysis,
including differential expression analysis and weighted gene co-expression network analysis, identified several
potential key genes, including sirt1l, hsdl2, capzb, nmnatl, atic, stbd1, and arfgap3, which may influence the
formation of characteristic flavor through regulating target metabolic pathways. This study revealed the flavor
profiles of GGC and DRGC, and explored the potential mechanisms of characteristic flavor formation, providing
scientific insights for improving muscle flavor through breeding.

1. Introduction

Grass carp (Ctenopharyngodon idella) is a pivotal species in Chinese
freshwater aquaculture. In recent years, its annual production has
increased rapidly, reaching 5,941,315 tons, which constitutes 21.4 % of
China's total freshwater aquaculture production (Bureau of Fisheries,
Ministry of Agriculture and Rural Affairs, 2024). This achievement is
largely attributed to the unique advantages of grass carp, including its
ability to efficiently convert plant material into high-quality animal
protein, low cultivation costs, and rapid growth rate (Lin et al., 2022;
Wang et al., 2024b). Nevertheless, with the expansion of farming scale
and the increase in intensification, the grass carp industry is facing new
challenges. Due to continuous artificial inbreeding and limited genetic

diversity in breeding populations, grass carp genetic resources have
significantly deteriorated, manifesting as reduced growth rates and
increased disease susceptibility (Tan et al., 2023; Wang et al., 2022b).
Furthermore, the intensive farming model characterized by high stock-
ing density has led to water quality deterioration, further compromising
the health condition and product quality of fish (Liu et al., 2018).
Therefore, improving grass carp germplasm has become a critical task to
promote the sustainable development of aquaculture.

Artificial gynogenesis, as an efficient breeding technique, has been
widely applied in aquaculture to develop new varieties with superior
traits (Liu et al., 2022; Wang et al., 2024b). It has been shown that
heterologous sperm not only activate egg for gynogenesis, but also insert
its genetic material into the genome, leading to significant heterosis in
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artificially gynogenetic offspring (Fu et al., 2022; Mao et al., 2019). This
includes accelerated growth rate (Wang et al., 2022b), increased sur-
vival rate (Ocalewicz et al., 2020), enhanced hypoxia tolerance (Fu
etal., 2022), or increased disease resistance (Tan et al., 2023). Using UV-
inactivated sperm from koi carp (Cyprinus carpio haematopterus) to
activate mature grass carp eggs, our laboratory successfully obtained
gynogenetic grass carp (GGC). As a result of the insertion of DNA frag-
ments from heterologous sperm, GGC exhibits greater disease resistance
and is considere invaluable genetic resource (Mao et al., 2020; Mao
et al., 2019). Subsequently, we developed a new improved variety, the
disease-resistant grass carp (DRGC), by backcrossing GGC with the grass
carp (GC). Aquaculture data indicate that the DRGC exhibit a 16.31 %
faster growth rate and a 22.18 % higher survival rate compared to GC,
highlighting its significant economic value and development potential in
the aquaculture (Wang et al., 2022b). Currently, research on GGC and
DRGC primarily focuses on their biological characteristics, disease
resistance, and genetic mechanisms (Mao et al., 2020; Mao et al., 2019;
Tan et al., 2023; Tan et al., 2024). Nonetheless, it remains unclear
whether there are differences in muscle quality between GGC, DRGC,
and sexually reproduced grass carp. Therefore, to assess the potential
and impact of GGC and DRGC in aquaculture, further studies on muscle
quality and the mechanisms of flavor formation are required.

Flesh quality traits and flavor are fundamental attributes of fish
quality, directly influencing consumer satisfaction and repeat purchase
intentions (Cai et al., 2021; Jiang et al., 2016; Tejerina et al., 2012).
Flesh quality traits involve key characteristics such as texture and water-
holding capacity. Texture includes the physical properties of the muscle,
which are important indicators for assessing the tactile and processing
performance of the flesh (Cheng et al., 2014; Tang et al., 2021). The
water-holding capacity, which significantly influences the juiciness and
tenderness of flesh, reflects its ability to retain moisture (Tejerina et al.,
2012). The flavor profile of flesh is primarily shaped by a diverse range
of volatile flavor compounds (VFCs), such as aldehydes, alcohols, ke-
tones, and heterocyclic compounds. These compounds result from
intricate biochemical processes, including lipid oxidation, thiamin
degradation, the Strecker degradation, and the Maillard reaction (Khan
et al., 2015). The distinctive flavor of fish products emerges from the
sophisticated interplay among these VFCs and the relative proportions of
these components. Flavor formation is an exceptionally complex process
influenced by multiple factors, with genetics often recognized as a key
factor affecting the flavor of fish products (Cai et al., 2021).

Recently, the integration of volatile metabolomics with tran-
scriptomics has provided powerful tools for in-depth research on the
composition and formation mechanisms of volatile flavor compounds in
meat. Among these techniques, comprehensive two-dimensional gas
chromatography-time-of-flight mass spectrometry (GC x GC-TOF MS)
has emerged as the preferred technique for characterizing volatile flavor
compounds in meat due to its superior resolution, high sensitivity,
excellent peak capacity, and rapid analysis speed (Wang et al., 2022c).
Transcriptome sequencing technology (RNA-seq) allows for compre-
hensive analysis of all transcripts within cells under specific physio-
logical conditions (Zhao et al., 2024), providing new avenues for
uncovering key genes and their complex regulatory mechanisms
involved in the biosynthesis of flavor compounds. These multi-omics
techniques have been used extensively in the study of livestock and
poultry muscle tissues and has made significant progress in identifying
key genes associated with the synthesis of volatile flavor compounds
(Wang et al., 2024¢c; Wang et al., 2022¢; Zhang et al., 2022b; Zhao et al.,
2024). For example, Zhao et al. (2024) revealed that the differences in
meat quality and flavor between Cobb broilers and Daweishan mini
chickens may be primarily attributed to amino acid and lipid metabolic
processes. Wang et al. (2024c) constructed a molecular network regu-
lating the flavor and lipid composition of pork by using a multi-omics
technique and identified six important regulatory genes related to
lipolysis, which may lead to flavor differences in different varieties of
pork. In the field of aquatic products, metabolomics has gradually
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become a key technology for quality assessment and monitoring
(Ciampa et al., 2023). Ciampa and Picone (2023) and Shumilina et al.
(2015) used NMR spectroscopy to study the changes in flesh quality of
red mullet (Mullus barbatus), bogue (Boops boops), and salmon (Salmo
salar) under different storage temperatures, identifying several metab-
olite biomarkers associated with freshness. Additionally, using GC-MS
technology, Cai et al. (2021) found significant differences in the content
of odor-active volatile compounds between diploid and triploid common
carp (Cyprinus carpio L). However, the application of integrated
metabolomics and transcriptomics in fish flavor research remains
limited, especially when investigating flavor differences in fish with
different genetic backgrounds.

To address this knowledge gap, this study first compared differences
in muscle quality traits and volatile flavor compounds among GGC,
DRGC, and GC. Subsequently, weighted gene co-expression network
analysis (WGCNA) was employed to integrate volatile metabolomics and
transcriptomic to elucidate the molecular mechanisms of characteristic
flavor formation. This comprehensive analysis revealed the unique
muscle quality traits and flavor profiles of DRGC and GGC, providing
novel insights into the underlying mechanisms of flavor formation in
grass carp. These findings offer a scientific basis for improving grass carp
muscle flavor through breeding strategies and hold promise for
enhancing the product quality and commercial value of grass carp.

2. Materials and methods
2.1. Animals and sample collection

The gynogenetic grass carp (GGC), disease-resistant grass carp
(DRGQ), and grass carp (GC) used in this study were provided by the
State Key Laboratory of Developmental Biology of Freshwater Fish,
Hunan Normal University, China. All experimental fish were raised in
identical aquatic environments and fed the same commercial feed. Eight
individuals with similar body weights (mean body weight 509 + 50.85
), uniform morphology, and good health were selected from each group
of GC, GGC, and DRGC for the experiments. A 24-h fasting period pre-
ceded the experiment. Afterward, fish were anesthetized with a 100 mg/
L solution of MS-222 (Sigma-Aldrich, USA). After anesthesia, the fish
were rapidly euthanized and placed on ice for dissection. The left-side
muscle from each fish (n = 8) was collected and trimmed into 1 cm x
1 cm x 0.5 cm samples for muscle texture analysis. Additionally, muscle
tissue samples (n = 8) were collected to determine water-holding ca-
pacity. All samples were analyzed within 24 h of collection. Further-
more, right-side muscle tissues from two fish per group were pooled into
a single sample (n = 4) and stored at —80 °C for later detection of vol-
atile flavor compounds and transcriptomic profiles.

2.2. Measurement of flesh quality traits

2.2.1. Muscle texture measurement

Texture profile analysis (TPA) was conducted on muscle samples
using a TMS-PRO device (Food Technology Corporation, USA) equipped
with a 250 N load cell and a flat-bottomed cylindrical probe (8 cm
diameter). Samples were compressed twice to 60 % of their original
height at a constant speed of 30 mm/min with an initial force of 0.1 N, as
described by Tang et al. (2021). This method assessed textural proper-
ties, including hardness, springiness, chewiness, gumminess, adhesive-
ness, and cohesiveness.

2.2.2. Centrifugal water loss and cooking loss

To determine centrifugal water loss, muscle samples (approximate 2
g) were centrifuged at 1000 xg for 30 min in centrifugal tubes. Then,
surface moisture was removed, and the samples were reweighed. Cen-
trifugal weight loss (%) was calculated using the formula:
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Centrifugal weight loss (%) = (Initial weight-Post — centrifugation weight)/Initial weight x 100.

A comparable method was employed to determine cooking loss.
Muscle samples were placed in perforated centrifugal tubes and heated
in a water bath at 70 °C for 15 min. After the removal of excess liquid,
the samples were reweighed. Cooking loss (%) was calculated as:

contribution of volatile compounds to muscle flavor was evaluated using
relative odor activity values (ROAVs), calculated based on threshold
methods (Xu et al., 2017).

Cooking loss (%) = (Initial weight-Post — cooking weight)/Initial weight x 100.

2.3. Volatile flavor compounds analysis

2.3.1. Extraction of volatile compounds by HS-SPME

An appropriate amount of N-hexyl-d13 alcohol standard was dis-
solved in a 50 % ethanol-water solution to prepare a 10 mg/L solution.
Muscle samples were quickly frozen in liquid nitrogen and homogenized
using a grinder. The homogenized muscle sample (0.6 g) was transferred
to a headspace vial, supplemented with 10 pL of internal standard so-
lution (N-hexyl-d13 alcohol, 10 mg/L). After sealing with a screw cap,
the headspace vial was incubated at 80 °C for 10 min. Volatile com-
pounds were extracted using a SPME fiber coated with DVB/CAR/PDMS
(50/30 pm x 1 cm). Before adsorption, the SPME fiber was conditioned
at 270 °C for 10 min. The fiber was then exposed to the headspace vial,
and adsorption was carried out at 80 °C for 25 min. Finally, the fiber was
placed into the GC injector for thermal desorption at 250 °C for 5 min.

2.3.2. GC x GC-TOFMS analysis

Volatile compound analysis was performed using a LECO Pegasus®
4D instrument (LECO, USA), with reference to the detection conditions
of Wang et al. (2022c). High-purity helium functioned as the carrier gas,
maintained at a constant 1.0 mL/min flow rate. The first-dimension
column (DB-Heavy Wax, 30 m x 250 pm LD., 0.5 pm, Agilent, USA)
was programmed to start at 50 °C (held for 2 min), then heat up to
230 °C at 5 °C/min and hold for 5 min. The second-dimension column
(Rxi-5Sil MS, 2.0 m x 150 pm LD., 0.15 pm, Restek, USA) was pro-
grammed 5 °C above the first column's temperature. The modulator was
maintained 15 °C higher than the second column, with a 6.0 s modu-
lation cycle. The mass spectrometer operated in EI mode at 70 eV,
scanning m/z 35-550, with an acquisition frequency of 200 spectra/s
and a detector voltage set to 2011 V.

2.4. Identification of differential volatile flavor compounds

Raw data processing including peak detection and mass spectral
deconvolution was carried out using LECO ChromaTOF® software (v
4.5). The signal-to-noise ratio (S/N) was configured to 50, and peak
areas were determined from ion chromatograms. Volatile compounds
were identified by matching their mass spectra against entries in the
NIST 2020 database. Retention indices (RI) were calculated using n-al-
kanes (C7-C30) and cross-referenced with database values for further
validation. Chemical classification of the identified volatile compounds
was carried out using the PubChem database (https://pubchem.ncbi.
nlm.nih.gov/) and ClassyFire software, categorizing compounds and
quantifying their relative content. The sensory odor analysis and com-
parison of these compounds were performed using the FlavorDB data-
base (https://cosylab.iiitd.edu.in/flavordb/). To compare data of
different magnitudes, raw data were normalized by internal standard
(Chen et al., 2024; Xiong et al., 2023). The analyses performed included
hierarchical clustering and multivariate statistical analysis. The

2.5. RNA extraction and RNA-Seq analysis

Total RNA extraction from muscle tissues was accomplished via the
RNA 6000 Nano Kit (Agilent, USA). Subsequent analysis was performed
using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA) to
assess the concentration and purity of RNA, complemented by gel
electrophoresis to verify RNA integrity. Sequencing libraries were con-
structed using the TruSeq® RNA Sample Preparation Kit (Illumina, USA)
and sequenced in paired-end (PE) mode on Illumina platform utilizing
next-generation sequencing (NGS) technology. For bioinformatic pro-
cessing, raw data were pre-processed with Cutadapt (v1.15) to remove
low-quality reads, followed by quality control with FastQC. The clean
reads were mapped to the grass carp reference genome using HISAT2
(v2.0.5). Read counts were quantified with HTSeq (v0.9.1) to obtain raw
expression levels, which were then normalized to FPKM values. Differ-
entially expressed genes (DEGs) were identified using the R package
DESeq2 (v1.30.0), with the following criteria: |logoFoldChange| > 1 and
a significant p-value <0.05. Enrichment analysis of DEGs for Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways was conducted
using the R package clusterProfiler (v3.4.4).

2.6. Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA) was con-
ducted on 12 RNA-seq datasets using the WGCNA package (v1.7.1)
(Langfelder and Horvath, 2008). To construct a similarity matrix,
Pearson correlation coefficients were calculated. The PickSoftThreshold
function was employed to determine an optimal soft-thresholding power
() for constructing a scale-free topology network. Subsequently, the
adjacency matrix was converted into a topological overlap matrix,
which underwent hierarchical clustering. Gene modules were divided
using the dynamic tree-cutting implemented. To explore the relationship
between module eigengenes and characteristic volatile flavor com-
pounds, correlation analysis was performed. Significant consensus
modules were identified based on the criteria of |r| > 0.7 and p < 0.05.

Module Membership (MM) was calculated to determine the corre-
lation between module eigengenes and gene expression profiles, while
Gene Significance (GS) reflected the correlation between target traits
and gene expression levels (Liu et al., 2019). Hub genes within key
modules were selected based on thresholds of GS > 0.8 and MM > 0.9
and were further cross-referenced with differentially expressed genes
(DEGs) to identify overlapping genes. To evaluate the interactions
among these gene, we constructed a protein-protein interaction (PPI)
network utilizing the STRING database (https://string-db.org/). The top
30 genes in the network were determined based on their MCC values
using the CytoHubba plugin in Cytoscape software. Genes identified
through DEGs analysis, WGCNA analysis, and PPI network analysis were
defined as potential key genes.
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2.7. Quantitative real-time PCR verification

To verify the reliability of the results, we selected 12 genes from the
candidate genes for qRT-PCR analysis. Total RNA was transformed into
cDNA through reverse transcription utilizing the HiScript III RT Super-
Mix (Vazyme, China). Gene expression analysis was conducted on a
QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific, USA).
Each 10 pL reaction consisted of 5 pL. ChamQ Universal SYBR qPCR
Master Mix (Vazyme, China), 3 pL cDNA template, 0.4 pL of both for-
ward and reverse primers (10 pmol/mL), and sterile water. The thermal
protocol included 40 amplification cycles, followed by a melt curve
analysis to verify product specificity. Primers were designed using
Primer 5.0 software, with full sequences detailed in Supplementary
Table S1. Relative mRNA expression was quantified using the 2724CT
method (Winer et al., 1999), with B-actin functioning as the internal
reference gene for data normalization.

2.8. Statistical analysis

Statistical results were characterized by mean + standard error of
mean (SEM). One-way analysis of variance (ANOVA) was applied to
analyze flesh quality traits and qRT-PCR data using SPSS 26 (SPSS Inc.,
USA). A p-value of less than 0.05 was considered to indicate statistical
significance. To explore the underlying patterns and differential VFCs in
the volatile metabolome, multivariate analyses, including principal
component analysis (PCA) and orthogonal partial least squares-
discriminant analysis (OPLS-DA), were conducted using SIMCA soft-
ware (Umetrics AB, Sweden).

3. Results and discussion

3.1. Flesh quality traits and differences among three varieties of grass
carp

Texture characteristics are crucial indicators of the edible quality of
flesh products, with hardness and chewiness being key parameters
reflecting the mouthfeel of flesh products (Cheng et al., 2014; Jiang
et al., 2016). The results showed that the muscle hardness and chewiness
of GGC was significantly higher than those of GC (Fig. 1A, D; p < 0.05),
while the gumminess of DRGC muscle were significantly higher than
that of GC (Fig. 1E; p < 0.05). For grass carp, higher muscle hardness
and chewiness are generally associated with greater sensory crispness,
which is preferred by consumers (Lin et al., 2009). Our findings align
with those presented by Wu et al. (2022) in their comparative study of
gynogenetic and common Megalobrama amblycephala, suggesting that
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heterosis may positively influence the textural characteristics of fish
muscle.

Water-holding capacity (WHC) is another critical indicator in the
evaluation of flesh quality (Tejerina et al., 2012). In this study, the
cooking loss of GGC muscle was significantly lower than that of GC
(Fig. 1H; p < 0.05), indicating better water retention during heat
treatment. This improvement has practical significance, as moisture loss
in flesh not only leads to weight reduction but also results in the loss of
nutrients and changes in flesh color, thereby affecting consumer satis-
faction (Chan et al., 2022). Protein denaturation and myofibrillar
structure contraction are two main factors affecting the WHC of cooked
meat (Hughes et al., 2014). Further studies on the morphological and
chemical changes in GGC muscle tissue are needed to elucidate the
mechanisms underlying the improved WHC.

3.2. Comparison of volatile flavor compounds in flesh from three varieties
of grass carp

3.2.1. The overview of volatile flavor compounds in three varieties of grass
carp muscles

In this study, GC x GC-TOF-MS was employed to analyze the volatile
flavor compounds (VFCs) in the muscle tissues of GGC, DRGC, and GC.
The results were presented in the form of three-dimensional chromato-
grams (Supplementary Fig. S1). Across the three grass carp varieties,
2826 volatile compounds were identified in the muscle tissues (Sup-
plementary Table S2). Specifically, 1667, 1392, and 1708 compounds
were identified in GGC, DRGC, and GC muscle, respectively, with 695
compounds common to all three varieties (Fig. 2A, B). The number of
compounds identified in this study significantly exceeds the 119 volatile
compounds detected by Chen et al. (2022) using GC-MS in grass carp.
This substantial difference can be attributed to the superior resolution
and detection sensitivity of the GC x GC-TOF MS employed in this study,
which allows for a more comprehensive detection and identification of
complex VFCs (Wang et al., 2022c).

The characteristic aroma of flesh is typically determined by the
proportional relationships of various volatile flavor components (Cai
et al., 2021; Wang et al., 2022c). The identified VFCs were chemically
categorized, and Fig. 2C presents a stacked bar chart illustrating the
relative proportions of volatile compound classes across different grass
carp varieties. The results demonstrate that alcohols, ketones, and esters
were predominant in the muscle tissues of all three grass carp varieties.
This result differs from those reported in previous studies, and the
discrepancy may be attributed to differences in the aquaculture water
conditions, feed nutritional composition, and the sensitivity of detection
methods employed (Chen et al., 2022; Fu et al., 2024).
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Fig. 2. The characteristic analysis and multivariate statistical analysis of volatile flavor compounds in muscle from three varieties of grass carp. (A) Quantities of
volatile flavor compounds in muscle from three varieties of Grass Carp; (B) Venn diagrams of volatile flavor compounds in muscle from three varieties of Grass Carp;
(C) Relative contents of different compound classes; (D) PCA analysis of the three groups of samples; (E) OPLS-DA analysis of the three groups of samples; (F)
Heatmap of differential volatile flavor compounds in muscle from three varieties of Grass Carp (VIP >1, p < 0.05); (G) Correlation network for the sensory char-

acteristics and volatile flavor compounds.

Differences in the relative abundance of specific VFC classes were
observed among the different grass carp varieties. As shown in Fig. 2C,
the relative content of carboxylic acids and ketones in GGC and DRGC
muscle was higher than in GC muscle. Ketones are primarily generated
through the oxidation and degradation of unsaturated fatty acids, as
well as the degradation of amino acids. Most ketone compounds have
sweet floral and fruity aromas, while diketones typically have a creamy

aroma (Wang et al., 2024c; Wang et al., 2024a). Carboxylic acids,
derived mainly from small-molecule fatty acids during lipid hydrolysis
and fatty acid oxidation (Pugliese et al., 2015), generally possess high
aroma thresholds and have a minimal direct impact on flesh flavor. The
relative content of alcohols in GC muscle was higher than in GGC and
DRGC muscle. Alcohols, a major class of volatile flavor compounds, are
predominantly formed via the oxidation of unsaturated fatty acids and
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amino acid metabolism. Among these, unsaturated alcohols have lower
thresholds and typically present mushroom and earthy flavors (Cai et al.,
2021; Xiong et al., 2023). Furthermore, the relative content of aldehydes
and heterocyclic compounds in GGC muscle was higher than in DRGC
and GC muscle. Aldehydes, generated from the oxidation of unsaturated
fatty acids and Strecker degradation, are essential contributors to flesh
flavor, owing to their high volatility and low odor thresholds (Chen
et al.,, 2024; Wang et al., 2024c). Their aroma characteristics often
include grassy, fruity, and fatty notes. Heterocyclic compounds,
including pyrroles and pyrazines, are known to impart roasted and nutty
flavors (Li et al., 2023b). In summary, the types and proportions of VFCs
in different grass carp muscles vary greatly, resulting in different flavor
profiles. Subsequent analysis is required to identify the core differential
volatile compounds and their contributions to the overall flavor.

3.2.2. Analysis of differential volatile flavor compounds in three varieties of
grass carp muscles

To mitigate the impact of missing data on the analysis, compounds
with an identification rate below 50 % across all samples were excluded.
Ultimately, 1112 volatile compounds were identified and subjected to
internal standard normalization for quantitative analysis (Supplemen-
tary Table S3) (Chen et al., 2024; Wang et al., 2024a). Principal
Component Analysis (PCA) revealed that the first two principal com-
ponents (PC1 and PC2) explained 23 % and 17.6 % of total variance,
respectively. The PCA score plot demonstrated that the samples within
each group are tightly clustered, indicating good reproducibility
(Fig. 2D). Meanwhile, a distinct separation trend was observed between
the GGC group and the DRGC and GC groups, suggesting that the volatile
compounds in the GGC muscle had changed considerably.

To further distinguish the differences between groups and reduce
within-group errors, supervised orthogonal partial least squares
discriminant analysis (OPLS-DA) was employed to analyze the volatile
substances (Huang et al., 2018; Yang et al., 2022). The cross-validation
parameters of the model were R%Y = 0.996 and Q? = 0.8, indicating that
the model demonstrates strong fit and predictive ability with a low
probability of overfitting (Huang et al., 2018). The OPLS-DA score plot
indicated that GGC, DRGC, and GC were separated into three distinct
categories, exhibiting clear differentiation (Fig. 2E). On the PC1 axis, the
DRGC group was located between the GGC and GC groups, a distribution
pattern consistent with their genetic relationship. Variable Importance
in the Projection (VIP) score serves as critical indicators for assessing the
significance of model variables. Typically, a VIP value exceeding 1 is
considered as one of the criteria for screening potential biomarkers
(Yang et al., 2022). In this study, 296 differential VFCs were identified
under the criteria of VIP > 1 in OPLS-DA and p < 0.05 in one-way
ANOVA (Supplementary Table S4). Compared to GC, the levels of 35
VFCs were significantly increased and 224 VFCs were significantly
decreased in GGC muscle. Compared to GC, the levels of 27 VFCs were
significantly increased and 206 VFCs were significantly decreased in
DRGC muscle. When comparing DRGC with GGC, 65 VFCs were
significantly higher, while 116 VFCs were significantly lower. The
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heatmap (Fig. 2F) clearly demonstrated the differences in VFCs
composition in the muscle of three grass carp varieties. Furthermore,
using the FlavorDB database, we developed a correlation network dia-
gram depicting the relationships between sensory characteristics and
VFCs (Fig. 2G). The overall flavor differences among the three grass carp
varieties were primarily manifested in sweet, floral, and fruity notes,
which were attributed to differences in VFCs.

The overall sensory characteristics of fish flesh are determined by the
combined effects of the odor thresholds and concentrations of various
volatile flavor compounds (Xu et al., 2017). Therefore, the Relative Odor
Activity Value (ROAV) of VFCs is used to evaluate their contribution to
the overall flavor profile. Compounds with ROAV >1 are regarded as key
flavor contributors, while those with 0.1 < ROAV <1 are considered
important modifiers of the overall flavor (Xu et al., 2017). We identified
seven characteristic VFCs with ROAV values exceeding 0.1 from 296
differential VFCs. Table 1 lists the ROAV values and odor character of
the characteristic volatile compounds in grass carp muscle.

Among them, 1-Hexanol (VIP > 1; ROAV >1) was identified as a key
volatile compound contributing to the characteristic flavor of GGC. 1-
Hexanol derived from the oxidative cleavage of palmitic and oleic
acids, has a grassy aroma. It is present in relatively high levels in the
muscle tissue of wild Yellow River carp (Cyprinus carpio) and Bigeye
Tuna (Thunnus obesus) (Wang et al., 2022a; Wang and Xie, 2019). Xiong
et al. (2023) discovered that 1-hexanol significantly accumulates in
Ningdu yellow chicken, serving as a key biomarker for distinguishing
between chicken breeds. Zang et al. (2022) found that 1-hexanol is one
of the characteristic aroma substances in Hexi Corridor red wine, posi-
tively correlated with floral characteristics. 1-Hexanol, 2-ethyl- (VIP >
1; ROAV >1) was identified as a key volatile compound contributing to
the characteristic flavor of DRGC. 1-Hexanol, 2-ethyl-, with its sweet and
floral notes, is one of the most abundant volatile flavor compounds in
fresh tilapia (Oreochromis mossambicus) fillets (Cheng et al., 2023). 2-
Nonenal, (E)-, Hexadecanoic acid, ethyl ester, and 1-octen-3-one (VIP
> 1; ROAV >1) were identified as key volatile compounds contributing
to the characteristic flavor of GC. Additionally, 1-octen-3-ol and 2-Pro-
penoic acid, ethyl ester (VIP > 1; ROAV >0.1) were volatile com-
pounds that modified the flavor of GC. Hexadecanoic acid, ethyl ester
exhibits significant waxy notes (Fan et al., 2021). 2-Nonenal, (E)-, 1-
octen-3-ol, and 1-octen-3-one are all products of linoleic acid oxida-
tive degradation. Among these compounds, 2-Nonenal, (E)-, character-
ized by grassy, earthy and fatty odors (Xu et al., 2023), has been
recognized as an odor-active component in Chinese mitten crab (Erio-
cheir sinensis) and triploid rainbow trout (Oncorhynchus mykiss) (Gu
et al.,, 2013; Ma et al., 2020). 1-octen-3-ol has a typical mushroom and
earthy aroma (Zhang et al., 2022a), which can reflect the degree of lipid
oxidation in meat to some extent. Iglesias and Medina (2008) confirmed
a high correlation between the levels of 1-octen-3-ol and indicators of
lipid oxidation in fish, such as thiobarbituric acid reactive substances
and peroxide value. 1-octen-3-one exhibits mushroom or metallic fla-
vors (Lubran et al., 2005; Xu et al., 2023). Notably, 1-octen-3-one may
also become a potent off-flavor substance in fish products, depending on

Table 1

ROAV values and odor character of characteristic volatile flavor compounds in the muscles of three varieties of grass carp.
Name Class CAS Formula Range of odor Odor character GGC_ROAV  DRGCROAV  GCROAV

min
1-Octen-3-ol Alcohols 3391-86-4 CgH160 11 Mushroom, Earthy 0.02 0.09 0.19
1-Hexanol, 2-ethyl- Alcohols 104-76-7 CgH150 0.198 Sweet, Floral 0.22 2.15 1.96
1-Hexanol Alcohols 111-27-3 CeH140 2.4 Green grass 1.48 0.60 0.60
2-Nonenal, (E)- Aldehydes 28’829_56- CoH160 0.0002 Fatty, Earthy, Green 0.38 0.03 2.34
2-P; i i hyl E: Plastic, Alcohol.
ropenoic acid, ethy Esters 140-88-5 CsHgO»  0.0066 Sweet, Ester, Plastic, Alcohol, 0.00 0.13 0.36
ester Ammoniacal

Hee’:‘:srecanmc acid, ethyl  porer 628-97-7 CisHasOr 2 Wax 0.23 0.87 113
1-Octen-3-one Ketones 4312-99-6 CgH140 0.005 Mushroom-Like, Metallic 25.89 9.35 100.00
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its concentration and relative proportion (Mahmoud and Buettner,
2017). Zhang et al. (2022a) analyzed volatile flavor compounds in fish
soup prepared from fish scrap and bone, finding that 1-Octen-3-one may
be a key compound responsible for the fishy odor in fish soup. 2-Prope-
noic acid, ethyl ester, widely used as a food flavoring substance, natu-
rally occurs in various fruits, including passion fruit, pineapple, and
durian (EFSA Panel on Food Contact Materials et al., 2017).

Previous studies have suggested that mild “fish-like”, “seafood” and
“sweet” flavors are generally considered desirable flavor characteristics
for aquatic products. However, pronounced “fish-like”, “fatty” and
“earthy” flavors are viewed as quality defects that may lead to poor
product palatability (Jones et al., 2022). In light of our findings, we
suggested that the characteristic flavors of GGC and DRGC muscle tend
toward a fresh aroma, which may be more appealing to consumers,
whereas the characteristic flavors of GC muscle are more associated with
fatty, mushroom and earthy odors. This difference might be related to
factors such as fat content and lipid oxidation level in different grass
carp muscles.

3.3. Transcriptomic analysis of flesh from three varieties of grass carp

To investigate the genetic basis underlying the differences in muscle
quality among the three grass carp varieties, transcriptome sequencing
was performed on their muscle tissues. As detailed in Supplementary
Table S5, the analysis generated 76.29 Gb of clean data from 12 samples,
with Q30 values exceeding 96.73 % and Q20 values above 99.95 %,
indicating high sequencing accuracy and data quality. These clean reads

A

800
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were aligned to the grass carp reference genome, achieving alignment
rates between 95.97 % and 98.15 %, which are sufficient for further
analyses.

Using DESeq for differential gene expression analysis, a total of 2222
differentially expressed genes (DEGs) were identified in pairwise com-
parisons among the three grass carp varieties. Specifically, 594 genes
were upregulated and 488 downregulated in GGC compared to GC,
while 546 genes were upregulated and 237 downregulated in DRGC
compared to GC. In the DRGC vs. GGC comparison, 563 genes were
upregulated and 509 downregulated (Fig. 3A). An intersection analysis
of DEGs across the three comparison groups revealed 22 common DEGs,
as shown in Fig. 3B.

KEGG pathway enrichment analysis of DEGs showed that 16, 9, and 5
pathways were significantly enriched in GGC vs. GC, DRGC vs. GC, and
DRGC vs. GGC comparisons, respectively (Supplementary
Tables S6-S8). Fig. 3C, D, and E present the top 20 enriched pathways
for each comparison group. Notably, pathways such as the Calcium
signaling pathway, Regulation of actin cytoskeleton, and Arginine and
proline metabolism, all associated with muscle quality, were enriched in
at least two of the comparisons. The calcium signaling pathway is in-
tegral to numerous cellular physiological processes. As a key mediator of
both intracellular and extracellular signal transduction, the dynamic
regulation of Ca?" directly influences muscle development and meta-
bolic processes. Studies have shown that elevated intracellular Ca?*
concentrations activate the calcineurin-NFAT pathway, which is known
to regulate the formation of oxidative muscle fibers (Luo et al., 2019).
After an animal's death, calcium-binding proteins can lower free calcium
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levels, leading to diminished activity of calcium-dependent proteases (e.
g., calpain), glycolytic enzymes, and other metabolic enzymes, thereby
affecting quality of meat (Purslow et al., 2021). Furthermore, studies
indicate that calcium supplementation, both in vivo and in vitro, can
promote muscle fat accumulation by inhibiting fatty acid oxidation,
which, in turn, influences the texture and flavor of meat (Zhang et al.,
2021). The regulation of actin cytoskeleton pathway involves a dynamic
network of actin polymers and associated actin-binding proteins. Studies
on pigs (Gao et al., 2011), Beijing-You chickens (Liu et al., 2016), and
chickens (Xue et al., 2017) have shown that this pathway is critical for
muscle development and intramuscular fat accumulation, and that these
factors significantly influence meat quality and flavor profiles. Arginine
and proline metabolism serves as a central pathway for synthesizing
arginine and proline using glutamate (Majumdar et al., 2016). As a
conditionally essential amino acid, arginine not only participates in
protein synthesis but also plays a regulatory role in physiological
metabolism through itself and its metabolites (Jobgen et al., 2009; Li
et al., 2022). Studies in mice have shown that arginine can regulate
energy metabolism, promote lipid oxidation, reduce white adipose tis-
sue accumulation, and enhance muscle protein deposition (Jobgen et al.,
2009). Lipids, as critical precursors of volatile flavor compounds,
significantly influence flavor formation through their metabolism.
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Furthermore, Ma et al. (2024) found that dietary arginine supplemen-
tation can promote muscle fiber proliferation and differentiation by
regulating the WNT signaling pathway, thereby improving muscle
hardness in grass carp. On the other hand, heterocyclic amino acids such
as proline and sulfur-containing amino acids undergo thermal degra-
dation during the heat processing of meat products, generating volatile
flavor compounds such as thiazoles and pyrroles (Yu et al., 2019).
Additionally, amino acids can participate in Maillard reactions with
sugars, producing a series of volatile compounds, including aldehydes,
ketones, and heterocyclic compounds, which further enhance the flavor
characteristics of meat (Khan et al., 2015).

In summary, these results reflect the genetic and molecular basis for
differences in muscle quality traits and volatile compounds among
different grass carp varieties. Calcium signaling pathway and Regulation
of actin cytoskeleton play key roles in lipid metabolism and muscle
development, closely correlated to the quality traits and flavor of flesh.
Moreover, Arginine and proline metabolism pathway influences flavor
formation through multiple mechanisms. On one hand, these amino
acids directly generate volatile flavor compounds via thermal degrada-
tion and Maillard reactions. On the other hand, they indirectly affect the
production of other flavor precursors by modulating lipid metabolism
and muscle composition.
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3.4. Weighted gene co-expression network analysis to screen key genes

To explore the intricate molecular mechanisms contributing to the
formation of characteristic VFCs in grass carp muscle, we conducted a
Weighted Gene Co-expression Network Analysis (WGCNA) using tran-
scriptomic data. WGCNA is a systems biology approach that clusters
genes with similar expression patterns into modules and associates these
modules with specific traits or phenotypes to identify potential key
genes (Langfelder and Horvath, 2008). In this study, we established a
scale-free network by setting the correlation coefficient threshold at 0.9
and the soft threshold power at 12 (Fig. 4A). Hierarchical clustering
revealed 12 gene modules with distinct expression patterns (Fig. 4B).
The distribution of gene numbers across modules is provided in Sup-
plementary Fig. S2. The Turquoise module contained the most genes
(6882), while the greenyellow module had the fewest (68 genes).
Additionally, 14 uncorrelated genes were assigned to the gray module,
which was excluded from further analysis. The gene co-expression
network heatmap revealed interconnections among multiple modules
(Fig. 4C).

To explore the relationship between gene modules and characteristic
VFCs, seven characteristic VFCs were selected from the volatile metab-
olomics data, including 1-Octen-3-o0l, 1-Hexanol, 2-ethyl-, 1-Hexanol, 2-
Nonenal (E)-, 2-Propenoic acid, ethyl ester, Hexadecanoic acid, ethyl
ester, and 1-Octen-3-one. Correlation analysis revealed significant as-
sociations between the gene modules and these VFCs. The correlation
heatmap (Fig. 4D) indicated that the blue and green modules were
significantly positively correlated with 1-Hexanol content and signifi-
cantly negatively correlated with 1-Hexanol, 2-ethyl- content (|r| > 0.7,
p < 0.05). Furthermore, the green module was significantly negatively
correlated with Hexadecanoic acid, ethyl ester content (|r| > 0.7, p <
0.05). The purple module showed a significant positive correlation with
1-Octen-3-ol content (|r| > 0.7, p < 0.05), while the magenta module
was significantly positively correlated with both 1-Octen-3-ol and 1-
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Hexanol, 2-ethyl- content (|r| > 0.7, p < 0.05). Based on these results,
we selected the blue, green, purple, and magenta modules as key mod-
ules for subsequent analysis.

To identify key regulatory genes within the key modules, we selected
hub genes based on stringent criteria: Gene Significance (GS) exceeding
0.8 and Module Membership (MM) greater than 0.9 (Fig. 5A-H). The hub
genes in each key module are listed in Supplementary Table S9. By
comparing the hub genes from these four key modules with differen-
tially expressed genes (DEGs) across the groups, we identified 179
overlapping genes. Specifically, 147, 15, 2, and 15 DEGs were found
among the hub genes in the blue, green, purple, and magenta modules,
respectively (Fig. 6A). These genes were not only differentially
expressed among various grass carp muscle samples but may also be key
regulators influencing the formation of volatile flavor compounds. To
investigate potential interactions between these genes, a protein-protein
interaction (PPI) network analysis was conducted using the STRING
11.0 database, applying a confidence threshold greater than 0.4. The
network visualization was carried out with CYTOSCAPE 3.6.1 software,
and the top 30 genes in the network were determined based on their
MCC scores using the CytoHubba plugin (Fig. 6B, C). Based on literature
reports, we identified seven potential key genes (sirtl, hsdl2, capzb,
nmnatl, atic, stbd1, and arfgap3). Additionally, other genes identified in
this study may serve as novel candidates for further research.

These potential key genes may influence the formation of charac-
teristic VFCs through distinct mechanisms. For example, Sirtuin 1
(SIRT1) is a NAD + -dependent deacetylase that controls critical meta-
bolic functions by deacetylating various substrates (Rahman and Islam,
2011). Studies in both cellular and animal models have highlighted the
critical role of SIRT1 in regulating lipid metabolism. SIRT1 inhibits lipid
accumulation by repressing PPARy (Picard et al., 2004) and regulating
PGC-1a to induce the transcription of genes associated with mitochon-
drial fatty acid oxidation (Gerhart-Hines et al., 2007). Additionally,
changes in sirt1 expression have been shown to influence the regulation
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of multiple genes associated with glucose and lipid metabolism (Rodgers
and Puigserver, 2007). SIRT1 activity is dependent on NAD+, and the
synthesis of NAD+ requires the catalytic action of nicotinamide mono-
nucleotide adenylyltransferase (NMNAT), which converts nicotinamide
mononucleotide (NMN) into NAD+. Thus, changes in nmnatl expres-
sion can alter NAD+ levels, thereby regulating multiple SIRT1-mediated
metabolic pathways (Majeed et al., 2021).

HSDL2 functions as an oxidoreductase that catalyzes the oxidation
and reduction of various substrates, including steroids, carbohydrates,
vitamins, bile acids, and fatty acids (Kavanagh et al., 2008). HSDL2,
possessing a sterol carrier protein 2 domain, is believed to be involved in
fatty acid metabolism (Kowalik et al., 2009). Research by Samson et al.
(2024) revealed that knocking out hsdl2 impairs fatty acid oxidation,
mitochondrial respiration, and tricarboxylic acid (TCA) cycle in hepa-
tocytes. These findings suggest that HSDL2 may indirectly affect meat

10

flavor by modulating fatty acid metabolism within muscle cells.

The CAPZB gene encodes the B subunit of the barbed-end actin
binding protein, which is part of the F-actin capping protein family
(Taye et al., 2017). This gene is vital for skeletal muscle development
and growth, regulating cellular signal transduction and participating in
actin-mediated myofilament contraction (Xu et al., 2012). Furthermore,
CAPZB is essential in muscle metabolism, structural characteristics, and
proteolysis, serving as a key connection point between different func-
tional networks (Ponsuksili et al., 2009). In studies on livestock such as
pigs and cattle, capzb has been recognized as an important candidate
gene influencing meat quality traits, particularly muscle tenderness
(Ponsuksili et al., 2009; Taye et al., 2017).

STBD1 is crucial for glycogen transport and metabolism and is highly
conserved across species (Jiang et al., 2010). Recent research by Zhu
et al. (2023) identified STBD1 as a novel biomarker for beef quality
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using label-free proteomics. Their results showed that STBD1 is associ-
ated with key sensory attributes of beef, including tenderness, chewi-
ness, stickiness, and flavor, possibly due to its impact on energy
metabolism pathways in muscle tissue (Zhu et al., 2023).

ArfGAP3 is a GTPase-activating protein that regulates the hydrolysis
of GTP bound to Arfl, a protein associated with the Golgi apparatus
(Weimer et al., 2008). ArfGAP3 is essential for regulating vesicular
trafficking pathways. Earlier research has demonstrated that ArfGAP3
regulates GLUT4 storage vesicles (GSV) transport and influences muscle
cell proliferation and differentiation by affecting glucose uptake (Li
et al., 2023a). Additionally, genome-wide association studies in cattle
have found that the arfgap3 gene is linked to meat quality (Li et al.,
2024; Santana et al., 2015).

Inosine monophosphate (IMP) is an essential flavor compound in
meat products. Studies have demonstrated that IMP not only signifi-
cantly enhances the umami taste of meat but also produces ribose during
its degradation, which can participate in the Maillard reaction with
amino acids, further enriching the meat flavor (Li et al., 2019). IMP
synthesis in vivo involves a ten-step enzymatic process, with the last two
steps catalyzed by 5-aminoimidazole-4-carboxamide ribonucleotide
formyltransferase/IMP cyclohydrolase (ATIC) (Jeannotte, 2014). Zhu
et al. (2017) demonstrated that IMP levels in Dapulian pig muscle were
significantly higher than in hybrid pigs and positively correlated with
atic mRNA expression in muscle. This finding highlights the role of atic
in IMP synthesis and its influence on meat flavor formation.

In conclusion, based on differential expression gene (DEG) analysis,
WGCNA, and supporting literature, we identified seven potential key
genes (sirtl, hsdl2, capzb, nmnatl, atic, stbd1, and arfgap3) that may
indirectly influence flavor compound generation through the regulation
of muscle growth, development, and glucose-lipid metabolism. These
results offer invaluable insights into the molecular mechanisms
responsible for flavor formation in grass carp muscle and suggest po-
tential molecular markers for enhancing grass carp quality. Future
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research should prioritize functional validation and mechanistic studies
of these genes to comprehensively elucidate their contributions to
muscle flavor formation in grass carp.

3.5. Gene expression verified by quantitative real-time PCR

We performed qRT-PCR analysis on candidate genes associated with
characteristic VFCs in order to validate the reliability and accuracy of
the RNA-seq data. The expression trends observed in the qRT-PCR
analysis were in line with those obtained from the RNA-seq results
(Fig. 7), further confirming the reliability of the identified genes.

4. Conclusion

In conclusion, the present study revealed changes in muscle traits
and volatile flavor compounds in gynogenetic grass carp (GGC) and its
backcross progeny (disease-resistant grass carp, DRGC). The findings
showed that GGC and DRGC exhibited enhanced muscle texture
compared to grass carp (GC). Significant differences were also observed
in the type and content of volatile flavor compounds among the three
grass carp varieties. Through OPLS-DA, 296 differential volatile flavor
compounds were screened across the three varieties (VIP > 1, p < 0.05).
Combining relative odor activity values (ROAV), seven characteristic
volatile flavor compounds associated with the varieties were further
identified (VIP > 1, ROAV >0.1). Furthermore, candidate genes
including sirt1, hsdl2, capzb, nmnatl, atic, stbd1l, and arfgap3, which
were associated with the production of characteristic volatile com-
pounds, were identified by DEG analysis, WGCNA, and PPI network
analysis. These findings provide invaluable reference for further inves-
tigation into the regulatory mechanisms of volatile compound meta-
bolism and the underlying causes of flavor differences among varieties.
Future research should focus on functional studies to validate the roles
of these key genes. This study not only enhance our understanding of
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Fig. 7. qRT-PCR validation of candidate genes, including sirtuin 1 (sirtl); hydroxysteroid dehydrogenase like 2 (hsdl2); capping actin protein of muscle Z-line
subunit beta (capzb); starch binding domain 1 (stbd1); ADP-ribosylation factor GTPase activating protein 3 (arfgap3); autophagy related 4 A, cysteine peptidase
(atg4a); exocyst complex component 2 (exoc2); ubiquitin-like 7b (ubl7b); BCL2 interacting protein 3 (bnip3); calcium binding and coiled-coil domain 1a (calcocola);
caseinolytic mitochondrial matrix peptidase chaperone subunit Xa (clpxa); TANK-binding kinase 1 (tbk1).
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flavor formation in grass carp, but also offers potential applications for
improving flavor quality of grass carp through breeding techniques.
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