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A B S T R A C T   

Ferritin H can participate in the regulation of fish immunity. Tissue-specific analysis revealed that the highest 
expressions of Ferritin H in parental species were observed in spleen, while peaked level of Ferritin H mRNA in 
hybrid fish was observed in liver. In addition, A. hydrophila challenge could sharply enhance their Ferritin H 
mRNA expression in liver, kidney and spleen. To further investigate their roles in immune regulation, their 
Ferritin H fusion proteins were produced in vitro. Ferritin H fusion proteins could exhibit a direct binding activity 
to A. hydrophila and endotoxin in a dose-dependent manner, restrict dissemination of A. hydrophila to tissues and 
abrogate inflammatory cascades. Moreover, treatment with Ferritin H fusion proteins could reduce A. hydrophila- 
induced lipid peroxidation. These results indicated that Ferritin H in hybrid fish elicited a similar immune 
regulation of A. hydrophila-induced inflammatory signals in comparison with those of its parents.   

1. Introduction 

Environmental pollution can pose a great risk to public health and 
lead to the occurrences of severe diseases (Qi et al., 2020). In general, 
ambient stressors may alter physiological response and elicit an immu-
nosuppressive effect in fish (Magnadottir, 2010). Although iron is an 
essential nutrient that can serve as a critical component of cytochromes, 
oxygen-binding molecules and enzymes (Andrews, 1999), excessive 
level of intracellular iron can damage cellular macromolecules and 
promote cell death which is largely due to its ability to catalyze the 
generation of radicals (Papanikolaou and Pantopoulos, 2005). Increased 
studies have demonstrated that iron can establish pro-oxidant status and 
mediate oxidative damage, showing a mutual dependence between iron 
homeostasis and oxidative stress (Meneghini, 1997). Evidences are 
emerging that Ferritin can also serve as acute phase protein (APP), 
participating in immune defense against pathogenic infection, occur-
rences of malignancies and autoimmune diseases (Beard et al., 2006; 
Ong et al., 2005; Zandman-Goddard and Shoenfeld, 2007). 

In general, fish contain various forms of pathogen-recognizing 
properties as well as developed complement cascades and apoptosis- 

related signals (Holland and Lambris, 2002; Luo and Wei, 2020). 
Among known APPs, Ferritin is a major iron-regulating protein con-
sisting of Ferritin H and Ferritin L in mammals (Worwood, 1990), while 
Ferritin H and Ferritin M are the predominant subunits in fish (Scudiero 
et al., 2013). Although most studies focus on function of mammalian 
APP genes synchronizing innate immunity with adaptive immune 
response, only a few reports study on the architecture and expression of 
Ferritin H in teleost, such as salmon (Andersen et al., 1995), channel 
catfish (Liu et al., 2010), large yellow croaker (Zhang et al., 2010) and 
blunt snout bream (Ding et al., 2017). In our previous studies, Ferritin H 
in hybrid fish and its parents could mitigate the inflammatory signals in 
respective fish cell lines (Luo et al., 2021a), but the data on comparative 
analysis of immune defense against bacterial invasion of Ferritin H in 
hybrid fish and its parents are sparse. 

Hybridization is a predominant evolutionary event that gives rise to 
species with novel capabilities. Meanwhile, chimeric genes may form 
through fusion of pieces of various genomes (Rogers et al., 2009), and 
then change gene structures and alter signal transductions upon in vitro 
stimuli (Koyama et al., 2007; Liu et al., 2016). Recent studies reveal that 
hybrid offspring can exhibit a strong resistance against pathogenic 

* Corresponding authors at: College of Life Science, Hunan Normal University, Changsha 410081, PR China. 
E-mail addresses: swluo@hunnu.edu.cn (S.-W. Luo), lsj@hunnu.edu.cn (S.-J. Liu).  

Contents lists available at ScienceDirect 

Comparative Biochemistry and Physiology, Part C 

journal homepage: www.elsevier.com/locate/cbpc 

https://doi.org/10.1016/j.cbpc.2021.109174 
Received 6 June 2021; Received in revised form 6 August 2021; Accepted 22 August 2021   

mailto:swluo@hunnu.edu.cn
mailto:lsj@hunnu.edu.cn
www.sciencedirect.com/science/journal/15320456
https://www.elsevier.com/locate/cbpc
https://doi.org/10.1016/j.cbpc.2021.109174
https://doi.org/10.1016/j.cbpc.2021.109174
https://doi.org/10.1016/j.cbpc.2021.109174
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cbpc.2021.109174&domain=pdf


Comparative Biochemistry and Physiology, Part C 250 (2021) 109174

2

infection in comparison with those of its parental species (Šimková et al., 
2013; Šimková et al., 2015). Crucian carp (Carassius auratus) is one of 
the most important economic freshwater fish and abundant in lakes, 
rivers and reservoirs in China, which is popular with fish farmers (Li 
et al., 2018). Currently, white crucian carp (Carassius cuvieri, WCC) and 
red crucian carp (Carassius auratus red var, RCC) are classified into 
different species in the genus of Carassius (J. Luo et al., 2014), thus 
generation of hybrid crucian carp (WR) by crossing of WCC (2n = 100, 
♀) and RCC (2n = 100, ♂) is considered as interspecific hybridization 
(Liu et al., 2019). Apart from documented problems, aquaculture of 
crucian carp is ravaged from environmental deterioration, which may 
render fish less resistant to pathogenic infection (Bowden, 2008; Choo 
et al., 2018). Additionally, the emergence of global climate change may 
exhibit a lingering effect in the expansion of water-borne pathogenic 
diseases, posing an increased threat to the survival of aquatic organisms 
(Marcogliese, 2008). Previous studies demonstrate that A. hydrophila 
challenge can significantly increase accumulative mortality of allogy-
nogenetic crucian carp (Liu et al., 2013). Thus, this study on compara-
tive analysis of immune response to A. hydrophila infection in hybrid 
crucian carp and its parents may be propitious to the sustainable 
development of aquaculture. 

In this study, the aims were to compare the tissue distribution of 
RCC/WCC/WR-Ferritin H mRNA and measure their expression patterns 
after A. hydrophila challenge. To further characterize their function, we 
studied in vitro binding activity of RCC/WCC/WR-Ferritin H to 
A. hydrophila and lipopolysaccharide (LPS). In addition, we investigated 
their immunoregulatory effect on bacterial dissemination in vivo and 
inflammatory response, which may provide a new insight to the immune 
regulation of hybrid fish. 

2. Materials and methods 

2.1. Ethics approval 

All applicable international, national, and/or institutional guidelines 
for the care and use of animals were followed. We followed the labo-
ratory animal guideline for the ethical review of the animal welfare of 
China (GB/T 35892–2018). 

2.2. Preparation of experimental animals 

According to previous studies, diploid hybrid fish (WR) was gener-
ated by crossing white crucian carp (Carassius cuvieri, WCC, ♀) and red 
crucian carp (Carassius auratus red var, RCC, ♂) (Liu et al., 2018; Wang 
et al., 2015). RCCs, WCCs and WRs were obtained from an aquaculture 
base in Wang Cheng district (Changsha, Hunan province, China). RCCs, 
WCCs and WRs were acclimatized in 70 × 65 × 65 cm plastic aquarium 
(25 fishes/aquarium) with the diluted freshwater (pH 8.0, 23 ± 1 ◦C) for 
two weeks. RCCs, WCCs and WRs were fed with commercial diet twice 
daily till 24 h before challenge experiment. In addition, water quality 
was properly controlled to avoid pathogenic contamination during fish 
acclimation or immune challenge. 

2.3. Immune challenge with A. hydrophila and fish sampling 

Based on our previous studies, A. hydrophila strain was cultured for 
24 h at 28 ◦C, centrifuged at 10,000 ×g for 15 min at 4 ◦C, and resus-
pended in 1 × PBS (pH 7.3). The concentration of A. hydrophila was 
adjusted to 1 × 107 CFU ml− 1 before the immune challenge experiment 
(Luo et al., 2020a). RCCs, WCCs and WRs (average length 15.6 ± 0.82 
cm) were intraperitoneally injected with 100 μl suspension of 1 × 107 

CFU ml− 1 A. hydrophila in PBS, while RCCs, WCCs and WRs injected with 
100 μl sterile PBS were used as the control group (Van Doan et al., 2013). 
PBS treatment and A. hydrophila treatment of RCCs, WCCs and WRs 
contained three replicates under the same conditions, respectively. The 
individuals were anesthetized with 100 mg/L MS-222 (Sigma-Aldrich, St 

Louis, MO, USA) to minimize suffering prior to sampling. Tissues were 
isolated at 0, 6, 12, 24, 36 and 48 h post-injection, immediately frozen in 
liquid nitrogen and preserved in − 80 ◦C. 

2.4. Quantitative real-time PCR (qRT-PCR) assay 

2.4.1. RNA isolation and cDNA synthesis 
Total RNA isolation and cDNA synthesis were performed as previ-

ously described (Luo et al., 2021b). Total RNA was extracted from iso-
lated tissues by using HiPure Total RNA Mini kit (Magen, China). Then, 
concentration and integrity of purified total RNA were determined by 
measurement of 260/280 nm absorbance and agarose gel electropho-
resis, respectively (Luo et al., 2015a). 1000 ng of purified total RNA was 
used for cDNA synthesis using Revert Aid™ M-MuLV Reverse Tran-
scriptase Kit (MBI Fermentas, USA). 

2.4.2. Expression profiles of Ferritin H mRNA determined by qRT-PCR 
assay 

Tissue-specific and A. hydrophila-stimulated expression patterns of 
RCC-Ferritin H, WCC-Ferritin H and WR-ferritin H were examined by 
using Applied Biosystems QuantStudio 5 Real-Time PCR System 
(Applied Biosystems, USA). qRT-PCR assay contained 1 cycle of 95 ◦C for 
30 s, 40 cycles of 95 ◦C for 15 s, 60 ◦C for 35 s, followed by 1 cycle of 
95 ◦C for 30 s, 60 ◦C for 60 s. At the end of qRT-PCR amplified reactions, 
melting curve analysis was implemented to confirm credibility of each 
qRT-PCR analysis (Qi et al., 2013). Besides, the expression of 18S rRNA 
(XR_003291850.1) was measured and used as internal control to 
normalize results of qRT-PCR analyses (Luo et al., 2016). Primer speci-
ficity was confirmed and each sample was analyzed in triplicate. The 
primers were shown in Table 1. qRT-PCR results were measured with 
2− ΔΔCt methods (Livak and Schmittgen, 2001). 

2.5. Plasmid preparation 

Open reading frame (ORF) sequence of RCC-Ferritin H, WCC-Ferritin 
H and WR-Ferritin H were obtained in our previous studies (Luo et al., 
2021a). To further investigate their immune function, the above ORF 
sequences were ligated to pET32a plasmid and transformed into 
Escherichia coli DH5α complement cells. The positive single bacterial 
clone was selected and cultured in Luria-Bertani (LB) liquid medium 
containing 100 μg/ml ampicillin. Finally, obtained bacterial clones were 
sequenced by Tsingke Biotechnology Co., Ltd. (Beijing, China). 

2.6. Production of Ferritin H fusion proteins 

2.6.1. Prokaryotic expression and purification 
Fusion proteins were produced by prokaryotic expression system as 

previously described (Luo et al., 2019a). In brief, pET32a, pET32a-RCC- 
Ferritin H, pET32a-WCC-Ferritin H and pET32a-WR-ferritin H plasmid 
were transformed into E. coli BL21 (DE3) competent cells, respectively. 
BL21 clones inserted with corrected plasmids were cultured in LB me-
dium with 100 μg/ml ampicillin at 37 ◦C until OD600 value reached 
about 0.6 and continued to incubate with 1 mM isopropyl-β-D-thio-
galactopyranoside (IPTG) for another 4 h. After IPTG induction and 
sonication, pellets were harvested, dissolved in the buffer containing 8 
M urea and centrifuged, then the soluble recombinant proteins were 
obtained and purified by using Ni-NTA resins (Novagen, China). 

2.6.2. Western blotting of Ferritin H fusion proteins 
Based on previous studies, western blotting was performed (Luo 

et al., 2017). Purified proteins were loaded on 12% SDS-PAGE gel, 
separated electrophoretically and washed in TBST buffer. After that, the 
separated proteins were transferred to Bio-Rad PVDF membranes on ice 
at 100 V for 90 min by using a western blotting system (Bio-Rad, USA). 
The membranes were washed in Tris buffered saline with tween 20 
(TBST) for 5 min, incubated with blocking buffer containing 3% BSA for 
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2 h and then incubated with 1:2000 diluted His-tag antibody at 4 ◦C 
overnight. Following wash with TBST buffer, membranes were incu-
bated with 1:2000 diluted peroxidase-conjugated antibody for 60 min at 
room temperature. PVDF membranes were developed and visualized. 
Following dialysis, the protein concentration was determined by Brad-
ford method (Cha et al., 2015). 

2.7. Enzyme linked immunosorbent assay (ELISA) assay 

Based on previous studies, 96-well plates were coated with resus-
pension of A. hydrophila (1 × 107 CFU ml− 1) or LPS (100 μg/ml, purified 
from Escherichia coli O111:B4, Sigma, USA) at 4 ◦C overnight, then 
blocked with 5% milk and washed with 0.5% Tween-20/PBS (Luo et al., 
2020b). After that, various concentrations of purified pET32a tag or WR- 
ferritin H were added to the plates for 2 h incubation at room temper-
ature, followed by incubation with anti-His antibody and horseradish 
peroxidase (HRP) secondary antibody. Then, 200 μl of tetrame-
thylbenzidine (TMB) diluted in substrate buffer was added and incu-
bated for 30 min in dark. Until the color was developed, 2 M H2SO4 was 
added. The absorbance at 450 nm was determined by a microplate 
reader. pET32a tag group was served as the control. The experiment was 
performed in triplicate. The binding index was calculated as described 
previously (Luo et al., 2019b). 

2.8. In vivo effect of Ferritin H fusion proteins on A. hydrophila infection 

To investigate the effect of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H on growth of A. hydrophila, in vivo injection was performed as 
described previously (Wang et al., 2017). Thirty minutes after bacterial 
infection (1 × 107 CFU ml− 1), RCCs, WCCs and WRs received intra-
peritoneal injection of purified pET32a tag, RCC-Ferritin H, WCC- 
Ferritin H and WR-Ferritin H at a dose of 4.0 μg/g, respectively. Then, 
both genomic DNA of tissues and bacterial DNA were extracted by using 
a DNA extraction kit (Omega, USA), and the concentration was adjusted 
to 100 ng/μl. qRT-PCR assay was used to detect haemolysin (hlyA, 
JF738032.1) of A. hydrophila, while GAPDH was analyzed as the refer-
ence gene. pET32a tag-treated group was used as the control. The ex-
periments were performed in triplicate. 

2.9. Protective effect of Ferritin H fusion proteins on inflammatory 
response following A. hydrophila infection 

To investigate the effect of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H on inflammatory response following A. hydrophila infection, 
above fusion protein treated samples were used for RNA isolation and 
cDNA synthesis. Then, qRT-PCR assay was performed as described 
above (Luo et al., 2020c). pET32a tag treated group was used as the 
control. The primers of Toll-interleukin 1 receptor domain containing 
adaptor protein (TIRAP, MG659314.1), myeloid differentiation factor 
88 (MyD88, KC816578.1), TNF receptor-associated factor 6 (TRAF6, 
KF767099.1), Interleukin-1β-1 (IL-1β-1, KC306642.1), Interleukin-1β-2 
(IL-1β-2, KC771268.1), tumor necrosis factor α-1 (TNFα-1, 
KJ923252.1), tumor necrosis factor α-2 (TNFα-2, KJ923253.1) and 18S 
rRNA were shown in Table.1. Each sample was analyzed in triplicate to 
certify the repetitiveness and credibility of experimental results. qRT- 
PCR results were measured by using Applied Biosystems QuantStudio 
5 Real-Time PCR System (Applied Biosystems, USA) with 2− ΔΔCt 

methods. 

2.10. Measurement of total superoxide dismutase (SOD) activity 

Based on the previous studies, the above fusion protein treated liver 
samples were homogenized and their protein concentrations were 
quantified by bicinchoninic acid (BCA) method (Luo et al., 2015b). 
According to the protocol of total SOD activity kit (Beyotime Biotech-
nology, Shanghai, China), the enzymatic activities in supernatants of 
above homogenates were measured as the changes in absorbance at 560 
nm by using a Synergy 2 multi-detection microplate reader (Bio-Tek, 
USA) (Luo et al., 2015c). The results of this enzymatic assay were given 
in units of SOD activity per milligram of protein, where 1 U of SOD is 
defined as the amount of enzyme producing 50% inhibition of SOD. The 
results were repeated in triplicate. 

2.11. Measurement of catalase (CAT) activity 

CAT activity was measured by ammonium molybdate spectropho-
tometric method (Yu et al., 2008). According to protocol of catalase 
(CAT) activity kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China), the reaction compounds could be monitored by the absorbance 
at 405 nm. The results of enzymatic assay were given in units of CAT 

Table 1 
The primer sequences used in this study.  

Primer names Sequence direction (5′ → 3′) Use 

pET-EcoRI-FerH-F CCGGAATTCATGTCGGAACCGAGAGTAAA Vector 
pET-Xhol-FerH-R CCGCTCGAGTTAATGATGATGATGATGATGAGTGATTGTCAGTGTGTCTT Vector 
RT-18S-F CCGACCCTCCCTCACG qPCR 
RT-18S-R GCCTGCTGCCTTCCTTG qPCR 
RT-FerH-F GAGGCAAAACTTCCCGACTG qPCR 
RT-FerH-R CCACTGGGCAAGCACGAG qPCR 
RT-TIRAP-F AGCAGCATTGGAAAATACTTGG qPCR 
RT-TIRAP-R TCGGTGTTGGATTCGTTGATA qPCR 
RT-MyD88-F CTATGAGGCGATTCCAGTAACA qPCR 
RT- MyD88-R CCAGTCTGCTGCCACCG qPCR 
RT-TRAF6-F AGACCAGCAAGGCTATGACG qPCR 
RT- TRAF6-R GCCGAGCGAAGACCCA qPCR 
RT-IL-1β-1-F CCTGACAGTGCTGGCTTTG qPCR 
RT- IL-1β-1-R AATGATGATGTTCACCACCTTC qPCR 
RT-IL-1β-2-F TCTTCGCATCCTCACAGCAT qPCR 
RT-IL-1β-2-R CAGCGTCACAGCCTTCAAAT qPCR 
RT-TNFα-1-F GGATTGCTGCCCTCACGG qPCR 
RT-TNFα-1-R CTTTGGACACTTTAGGTTCATACG qPCR 
RT-TNFα-2-F GTGGGGTCCTGCTGGCT qPCR 
RT-TNFα-2-R CTGGTCCTGGTTCTGTTTC qPCR 
RT-hlyA-F GGCCGGTGGCCCGAAGATACGGG qPCR 
RT-hlyA-R GGCGGCGCCGGACGAGACGGGG qPCR 
RT-GAPDH-F CAGGGTGGTGCCAAGCG qPCR 
RT-GAPDH-R GGGGAGCCAAGCAGTTAGTG qPCR  
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activity per milligram of protein, where 1 U of CAT is defined as the 
amount of enzyme decomposing 1 μmol H2O2 per second. The results 
were repeated in triplicate. 

2.12. Determination of malondialdehyde (MDA) production 

Free MDA and lipid hydroperoxides can be selected determined by 
thiobarbituric acid (TBA) method (Schmedes and Hølmer, 1989). Ac-
cording to protocol of lipid peroxidation MDA assay kit (Beyotime 
Biotechnology, Shanghai, China), MDA amount in supernatants of above 
homogenates were measured by using a Synergy 2 multi-detection 
microplate reader (Bio-Tek, USA) (S.-W. Luo et al., 2014). The concen-
tration of MDA was expressed as nanomole MDA per milligram protein. 
The results were repeated in triplicate. 

2.13. Statistical analyses 

The data analysis was measured by using SPSS 18 analysis program 
and represented as means ± standard deviation. All of the experimental 
data analysis was subjected to Student's t-test or one-way ANOVA (one- 
way analysis of variance). In the further analysis of Duncan's multiple 
range test, only if the level of P-value < 0.05, the differences were 
considered statistically significant. 

3. Results 

3.1. Gene expression profiles of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H mRNA 

In Fig. 1A–C, tissue-specific RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H mRNA expression were observed in all isolated tissues (L: 
liver; I: intestine; K: kidney; G: gill; M: muscle; B: brain; S: spleen). High- 
level mRNA expressions of RCC-Ferritin H and WCC-Ferritin H were 
observed in spleen, whereas the highest expression level of WR-Ferritin 
H mRNA was observed in liver. 

Moreover, expression profiles of RCC-Ferritin H, WCC-Ferritin H and 
WR-Ferritin H in liver, kidney and spleen were investigated at 0, 6, 12, 
24, 36 and 48 h after A. hydrophila challenge. As shown in Fig. 2A–C, the 
dramatic fluctuation of liver RCC-Ferritin H expression was detected 
after A. hydrophila challenge and reached the peaked level at 48 h, while 
expression levels of RCC-Ferritin H mRNA in kidney and spleen peaked 
at 12 h post-infection. In Fig. 2D–F, the highest expressions of WCC- 
Ferritin H mRNA in liver and kidney were observed at 48 h post- 
infection, while splenic Ferritin H mRNA expression peaked at 24 h 
following A. hydrophila challenge, followed by a sharp decrease from 36 
h to 48 h. Fig. 2G–I, expression levels of WR-Ferritin H mRNA in liver, 
kidney and spleen began to increase at 6 h and peaked at 36 h, 6 h and 
12 h, respectively. 

3.2. Prokaryotic expression and fusion protein validation 

pET32a-RCC-Ferritin H, pET32a-WCC-Ferritin H, pET32a-WR- 
Ferritin H and pET32a plasmid were transformed into E. coli BL21 
(DE3) competent cells for protein expression, respectively. After IPTG 
induction, whole cell lysates were detected by SDS-PAGE. In. Fig. 3A–C, 
fusion protein bands were visualized in pET32a-RCC-ferritin H, pET32a- 
WCC-ferritin H, pET32a-WR-ferritin H transformed cells compared with 
that of pET32a transformed cells, respectively. Following sonication, 
RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H fusion proteins were 
purified by using a Ni-NTA resin (Millipore), and then confirmed by 
western blotting using anti-His antibody. 

3.3. Binding activity of RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin 
H to A. hydrophila and LPS 

In Fig. 4A–B, RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H 

Fig. 1. Tissue-specific expressions of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H mRNA. 
Relative RCC-Ferritin H (A), WCC-Ferritin H (B) and WR-Ferritin H (C) mRNA 
expression of each tissue was calculated by the 2− ΔΔCt methods using 18S rRNA 
as a reference gene, and the relative mRNA level was compared with spleen 
expression. (L: liver; I: intestine; K: kidney; G: gill; M: muscle; B: brain; 
S: spleen.) 
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fusion proteins exhibited a gradual increase of in vitro binding ability to 
A. hydrophila and LPS in comparison with those of the control, sug-
gesting that RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H could 
elicit a direct binding to A. hydrophila and LPS in a dose-dependent 
manner. 

3.4. In vivo inhibitory effect of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H on the growth of A. hydrophila 

In Fig. 5A, expressions of A. hydrophila hlyA in liver, kidney and 
spleen in A. hydrophila + RCC-Ferritin H group were approximately 

Fig. 2. qRT-PCR analysis of RCC-Ferritin H (A–C), WCC-Ferritin H (D–F) and WR-Ferritin H (G–I) mRNA expression in liver, kidney and spleen at 0, 6, 12, 24, 36 and 
48 h post-challenge. The calculated data (mean ± SD) of six individuals (n = 6) with different letters were significantly different (P < 0.05). 
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6.75-, 5.81- and 2.83-fold lower than those of A. hydrophila + pET32α 
tag group, respectively. In Fig. 5B, expressions of A. hydrophila hlyA in 
liver, kidney and spleen showed a 4.96-, 10.94- and 2.56-fold decrease 
in A. hydrophila + WCC-Ferritin H group, respectively. In Fig. 5C, a 4.95- 
, 12.86- and 10.59-fold decrease of A. hydrophila hlyA expression in 

liver, kidney and spleen was observed in A. hydrophila + WR-Ferritin H 
group. These results suggested that the administration of RCC-Ferritin H, 
WCC-Ferritin H and WR-Ferritin H can mitigate in vivo dissemination of 
A. hydrophila to tissues. 

Fig. 2. (continued). 
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3.5. Regulatory effect of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H on A. hydrophila-stimulated inflammatory cascades 

To investigate the immunoregulatory effect of RCC-Ferritin H, WCC- 
Ferritin H and WR-ferritin H on A. hydrophila-induced inflammatory 
signal molecules (Fig. 6) and cytokine expressions (Fig. 7), transcript 
levels of TIRAP, MyD88, TRAF6, IL-1β-1, IL-1β-2, TNFα-1 and TNFα-2 
were detected at 24 h post-challenge. 

In RCCs, liver expression levels of TIRAP, MyD88, TRAF6, IL-1β-1, 
IL-1β-2, TNFα-1 and TNFα-2 showed a 2.35-, 12.34-, 15.10-, 2.47-, 
13.71-, 42.28- and 1.84-fold decrease in A. hydrophila + RCC-Ferritin H 
group, respectively. In kidney, expression levels of TIRAP, MyD88, 
TRAF6, IL-1β-1, IL-1β-2, TNFα-1 and TNFα-2 in A. hydrophila + RCC- 
Ferritin H group were approximately 5.93-, 5.48-, 5.86-, 3.56-, 2.57-, 
15.86- and 3.20-fold lower than those of the control, respectively. In 
addition, a 3.77-, 12,36-, 11.79-, 2.51-, 3.95-, 25.32- and 6.46-fold 
decrease of TIRAP, MyD88, TRAF6, IL-1β-1, IL-1β-2, TNFα-1 and 
TNFα-2 expression was observed in A. hydrophila + RCC-Ferritin H 
group, respectively. 

In WCCs, liver expression levels of TIRAP, MyD88, TRAF6, IL-1β-1, 
IL-1β-2, TNFα-1 and TNFα-2 in A. hydrophila + WCC-Ferritin H group 
were approximately 8.07-, 2.25-, 4.54-, 2.56-, 1.56-, 18.45- and 4.41- 
fold lower than those of the control, respectively. In kidney, TIRAP, 
MyD88, TRAF6, IL-1β-1, IL-1β-2, TNFα-1 and TNFα-2 expression levels 
exhibited a 3.41-, 54.46-, 2.21-, 10.32-, 3.17-, 1.56- and 1.91-fold 
decrease in A. hydrophila + WCC-Ferritin H group, respectively. In 
addition, splenic expression levels of TIRAP, MyD88, TRAF6, IL-1β-1, IL- 
1β-2, TNFα-1 and TNFα-2 in A. hydrophila + WCC-Ferritin H group were 
approximately 18.11-, 10.59-, 42.05-, 4.60-, 3.24-, 7.33- and 1.32-fold 
lower than those of the control, respectively. 

In WRs, liver expression levels of TIRAP, MyD88, TRAF6, IL-1β-1, IL- 
1β-2, TNFα-1 and TNFα-2 in A. hydrophila + WR-Ferritin H group were 
about 3.06-, 13.50-, 31.82-, 5.95-, 13.23-, 16.01- and 14.09-fold lower 
than those of the control, respectively. Kidney expressions of TIRAP, 
MyD88, TRAF6, IL-1β-1, IL-1β-2, TNFα-1 and TNFα-2 in A. hydrophila +
WR-Ferritin H group showed a 9.90-, 4.95-, 36.07-, 6.39-, 18.33-, 51.02- 
and 12.79-fold decrease by comparing with those of the control, 
respectively. In addition, a 3.71-, 5.42-, 56.67-, 4.13-, 1.98-, 19.40- and 
10.29-fold decrease in the expressions of TIRAP, MyD88, TRAF6, IL-1β- 
1, IL-1β-2, TNFα-1 and TNFα-2 in A. hydrophila + WR-Ferritin H group 
was detected in comparison with those of the control, respectively. 

3.6. Effect of RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H on 
A. hydrophila-induced oxidative stress 

To investigate antioxidant function of RCC-Ferritin H, WCC-Ferritin 
H and WR-ferritin H on A. hydrophila infection, total SOD activity, MDA 
amount and CAT activity in liver were detected at 24 h post-infection. As 
shown in Fig. 8, a sharp increase of total SOD activity and CAT activity in 
liver were observed in RCC/WCC/WR-Ferritin H treated group at 24 h 
post-infection by comparing with those of the control, respectively. In 
contrast, fish receiving the in vivo administration of RCC/WCC/WR- 
Ferritin H exhibited a reduced MDA amount in liver in comparison 
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Fig. 3. Generation and purification of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H fusion protein. Lane M: Protein molecular standard; Lane pET32a 
WCL: Total protein was isolated from IPTG induced pET32a-BL21; Lane RCC/ 
WCC/WR-Ferritin H WCL: Total protein was isolated from whole cell lysis of 
IPTG induced pET32a-RCC/WCC/WR-Ferritin H-BL21; Lane RCC/WCC/WR- 
Ferritin H supernatants: Supernatants isolated from IPTG induced pET32a- 
RCC/WCC/WR-Ferritin H-BL21 after sonication; Lane RCC/WCC/WR-Ferritin 
H pellets: Pellets isolated from IPTG induced pET32a-RCC/WCC/WR-Ferritin 
H-BL21 after sonication; Lane RCC/WCC/WR-Ferritin H purification: Purified 
RCC/WCC/WR-Ferritin H fusion protein; Lane RCC/WCC/WR-Ferritin H WB: 
Purified RCC/WCC/WR-Ferritin H fusion protein was identified by western 
blotting using anti-His tag antibody. 
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with those of the control, respectively. 

4. Discussion 

Ferritin H is a ubiquitous iron-binding protein of ferritin-like su-
perfamily, possessing a ferritin-like domain and seven conserved metal 
binding sites. In this study, RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H mRNA were expressed a wide range of isolated tissues, 
which is similar to previous studies (Ding et al., 2017). In addition, the 
highest expression levels of RCC-Ferritin H and WCC-Ferritin H was 
observed in spleen, while a strong expression of WR-Ferritin H mRNA 
was observed in liver. 

Previous studies have demonstrated that kidney and spleen are the 
major lymphoid tissues, whose populations of lymphocytes and mac-
rophages are capable of mounting an immune response (Press and 
Evensen, 1999). In addition, Liver can increase the synthesis and 
secretion of acute phase proteins (APPs) in response to tissue trauma or 
infection, which may function in limiting the dispersal of infectious 
agents, repairing tissue damage as well as killing potential pathogens 
(Bayne and Gerwick, 2001). In this study, RCCs, WCCs and WRs 
receiving A. hydrophila infection exhibited the elevated expressions of 
RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H in liver, kidney and 

Fig. 4. Binding activity of RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H 
fusion protein to A. hydrophila (A) and LPS (B) determined by ELISA assay. The 
calculated data (mean ± SD) with different letters were significantly different 
(P < 0.05) among the groups. The experiments were performed in triplicate. 

Fig. 5. In vivo inhibitory effect of RCC-Ferritin H, WCC-Ferritin H and WR- 
Ferritin H fusion protein on A. hydrophila infection. Expression of 
A. hydrophila hlyA gene was determined by qPCR assay. The calculated data 
(mean ± SD) with different letters were significantly different (P < 0.05) among 
the groups. The experiments were performed in triplicate. 
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spleen, respectively. These studies implied that RCC-Ferritin H, WCC- 
Ferritin H and WR-Ferritin H may be involved in immune response to 
A. hydrophila infection. In our previous study, Ferritin H in hybrid 
offspring and its parents can exhibit a similar downregulatory effect in 

LPS induced nuclear factor-κB (NF-κB) inflammatory signal in fish cells 
(Luo et al., 2021a). However, comparative mechanism on in vivo 
inhibitory effect of Ferritin H on A. hydrophila-induced inflammatory 
response in hybrid offspring and its parents was not clear. 

Fig. 6. Immunoregulatory effect of RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H fusion protein on A. hydrophila-induced inflammatory cascades. qRT-PCR 
analysis of TIRAP (A–C), MyD88 (D–F) and TRAF6 (G–I) mRNA expression in liver, kidney and spleen at 24 h post-challenge. The calculated data (mean ± SD) 
with different letters were significantly different (P < 0.05) among the groups. The experiments were performed in triplicate. 
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To elucidate the mechanism linking Ferritin H to immune regulation 
between hybrid offspring and its parents, RCC-Ferritin H, WCC-Ferritin 
H and WR-Ferritin H recombinant proteins were produced. Then, ELISA 
assay revealed that RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H 
could exhibit a direct binding activity to A. hydrophila and LPS in a dose- 
dependent manner. Additionally, in vivo administration of RCC-Ferritin 

H, WCC-Ferritin H and WR-Ferritin H could diminish the expressions of 
A. hydrophila hlyA in liver, kidney and spleen, suggesting that Ferritin H 
derived from hybrid offspring and its parents can alleviate bacterial 
disseminations to tissues in vivo. 

A. hydrophila is a gram-negative bacteria, posing an increasing threat 
to the survival of economic fish (Gonzalez-Serrano et al., 2010). 

Fig. 6. (continued). 
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Furthermore, LPS is an endotoxin on the outer membrane of gram- 
negative bacteria, which is involved in innate and adaptive immunity 
through Toll-like receptor (TLR) signals (Triantafilou et al., 2004). Toll- 
interleukin 1 receptor domain containing adaptor protein (TIRAP) 
serves as a major adaptor involved in the connection of LPS-activated 
TLR signals (Horng et al., 2002), then triggering the recruitment of 
myeloid differentiation factor 88 (MyD88) (Kawai et al., 1999). The TNF 

receptor-associated factor 6 (TRAF6) is a critical signal molecule 
participating in induction of MyD88-induced NF-κB activation (Muroi 
and Tanamoto, 2008). As is well known, NF-κB is a key transcription 
factor capable of determining the choice between life or death events 
(Karin and Lin, 2002), participating in cytokine production (Diomede 
et al., 2017; Hunter and De Plaen, 2014) and apoptotic regulation (Wang 
et al., 1996; Zhu et al., 2011). Current studies revealed that expression 

Fig. 7. Immunoregulatory effect of RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H fusion protein on A. hydrophila-induced cytokine expressions. qRT-PCR 
analysis of IL-1β-1 (A–C), IL-1β-2 (D–F), TNFα-1 (G–I) and TNFα-2 (J–L) mRNA expression in liver, kidney and spleen at 24 h post-challenge. The calculated data 
(mean ± SD) with different letters were significantly different (P < 0.05) among the groups. The experiments were performed in triplicate. 
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profiles of TIRAP, MyD88, TRAF6, IL-1β-1, IL-1β-2, TNFα-1 and TNFα-2 
decreased dramatically in A. hydrophila + RCC/WCC/WR-Ferritin H 
group, suggesting that in vivo administration of RCC-Ferritin H, WCC- 
Ferritin H and WR-Ferritin H protein could attenuate A. hydrophila- 
induced inflammatory cascades and cytokine productions. 

A. hydrophila infection and LPS stimulation can stimulate oxidative 
stress in fish (Chen et al., 2020; Luo et al., 2021c). Oxidative stress may 
refer to up-regulated level of intracellular ROS accumulation, then 
causing antioxidant imbalance and lipid peroxidation (Luo et al., 2015c; 

Schieber and Chandel, 2014). Additionally, fish liver contains abun-
dantly various detoxification enzymes, playing a pivotal role in xeno-
biotic metabolism (Blom et al., 2000; Tao and Peng, 2009). As is well 
known, SOD and CAT are playing a critical role in the antioxidant de-
fense against oxidative stress induced various stimuli, while MDA is 
mostly used as an end-product marker of lipid peroxidation during the 
occurrence of oxidative response (Farombi et al., 2007; Wei et al., 2010; 
Zhang et al., 2004). Current studies revealed that decreased MDA 
amounts and enhanced levels of total SOD and CAT activity in liver were 

Fig. 7. (continued). 
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observed in A. hydrophila + RCC/WCC/WR-Ferritin H group. Although 
stress-induced iron release can trigger intracellular oxidative stress 
(Gilmour et al., 1997), Ferritin can protect cells from oxidant-mediated 
cytolysis via iron sequestrant (Balla et al., 1992). Moreover, 

overexpression of Ferritin H can reduce ROS accumulation in response 
to oxidant challenge (Orino et al., 2001). These results indicated that 
RCC-Ferritin H, WCC-Ferritin H and WR-Ferritin H could alleviate 
A. hydrophila-induced lipid peroxidation and maintain antioxidant ac-
tivity. Thus, taken together, Ferritin H of hybrid offspring may elicit a 
similar suppression of A. hydrophila-induced inflammatory cascades and 
lipid peroxidation by comparing with those of its parents. 

In summary, we compared tissue-specific expressions of RCC-Ferritin 
H, WCC-Ferritin H and WR-Ferritin H and studied their up-regulated 
expressions following A. hydrophila challenge. RCC-Ferritin H, WCC- 
Ferritin H and WR-Ferritin H fusion proteins could directly bind to 
A. hydrophila and LPS. In vivo administration of RCC-Ferritin H, WCC- 
Ferritin H and WR-Ferritin H fusion proteins could limit the 
A. hydrophila dissemination to tissues and lessen bacteria-induced in-
flammatory cascades and lipid peroxidation. Our results indicated that 
down-regulation of A. hydrophila-induced inflammatory signals by 
ferritin H were similar in hybrid fish and its parents. 
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