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Abstract

Background: Formation of triploid organism is useful in genetics and breeding. In this study, autotriploid Carassius
auratus (3nRR, 3n = 150) was generated from Carassius auratus red var. (RCC, 2n = 100) (♀) and autotetraploid
Carassius auratus (4nRR, 4n = 200) (♂). The female 3nRR produced haploid, diploid and triploid eggs, whereas the
male 3nRR was infertile. The aim of the present study was to explore fertility of potential candidate genes of 3nRR.

Results: Gonadal transcriptome profiling of four groups (3 females RCC (FRCC), 3 males 4nRR (M4nRR), 3 males
3nRR (M3nRR) and 3 females 3nRR (F3nRR)) was performed using RNA-SEq. A total of 78.90 Gb of clean short reads
and 24,262 differentially expressed transcripts (DETs), including 20,155 in F3nRR vs. FRCC and 4,107 in M3nRR vs.
M4nRR were identified. A total of 106 enriched pathways were identified through KEGG enrichment analysis. Out of
the enriched pathways, 44 and 62 signalling pathways were identified in F3nRR vs. FRCC and M3nRR vs. M4nRR,
respectively. A total of 80 and 25 potential candidate genes for fertility-related in F3nRR and M3nRR were identified,
respectively, through GO, KEGG analyses and the published literature. Moreover, protein-protein interaction (PPI)
network construction of these fertility-associated genes were performed. Analysis of the PPI networks showed that
6 hub genes (MYC, SOX2, BMP4, GATA4, PTEN and BMP2) were involved in female fertility of F3nRR, and 2 hub genes
(TP53 and FGF2) were involved in male sterility of M3nRR.

Conclusions: Establishment of autotriploid fish offers an ideal model to study reproductive traits of triploid fish.
RNA-Seq data revealed 6 genes, namely, MYC, SOX2, BMP4, GATA4, PTEN and BMP2, involved in the female fertility of
the F3nRR. Moreover, 2 genes, namely, TP53 and FGF2, were related to the male sterility of the M3nRR. These
findings provide information on reproduction and breeding in triploid fish.
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Background
Polyploid organisms have three or more chromosome
sets. Triploidy, an example of polyploids, plays a vital
role in the process of biological evolution and can be
divided into autotriploidy and allotriploidy [1]. Allotri-
ploids have three chromosome sets from two or more

different species, whereas autotriploids have three
chromosome sets derived from a single taxon.
Development of gonads is critical to fertility in sexually

reproducing organisms especially in triploids and is
tightly regulated by complex processes [2]. Sex deter-
mination, sexual differentiation and gametogenesis are
important processes during gonadal development. Any
abnormality in these events can result in infertility. Sev-
eral genes implicated in sexual determination and differ-
entiation have been reported [3–5]. Gametogenesis,
including oogenesis and spermatogenesis, are also regu-
lated by complex mechanisms and several regulatory
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genes [6, 7]. A previous study explored regulation of
early stages of oogenesis [8]. In addition, studies ex-
plored biological mechanisms that occur mid-oogenesis
[9], and regulation of late oogenesis [10]. Spermatogen-
esis is divided into three steps: spermatogonial mitotic
proliferation, two times of meiosis, and post-meiotic dif-
ferentiation [11]. Previous studies explored the func-
tional mechanisms of spermatocytogenesis [12], meiosis
during spermatogenesis [13], and spermiogenesis [14].
Fertility of polyploids has important implications in

fisheries and sustainable aquaculture. Artificial triploids
of species such as Atlantic salmon, Oncorhynchus
mykiss, Salmo trutta and Salvelinus fontinalis have been
widely used in fish farming industry [15]. There has been
a believe that triploidization causes infertility in fish. In
addition, a previous study reports that the triploid can
channel the energy required for gonad maturation to
somatic growth, causing rapid growth rates compared
with their diploid counterparts [16]. However, a different
study reported that triploid fish can produce normal
gametes [17]. In our previous study, Carassius auratus
red var. (RCC) (female) and autotetraploid Carassius
auratus (4nRR) (male) were artificially hybridized to
produce hybrid autotriploid Carassius auratus (3nRR).
After hybridization, the male 3nRR did not produce nor-
mal sperm, whereas the females generated dynamic eggs
[18]. Analysis of meiosis-related gene expression showed
that Dmc1 and Ph1 had higher expression level in female
3nRR compared with levels in the males, indicating that
these genes are involved in regulating fertility of 3nRR
[19]. Molecular mechanisms involving 3nRR fish in con-
trolling fertility have not been explored fully.
RNA-Seq technology is utilised for analysis of the

structure and function of genes at the organismal level,
and for exploring a series of biological pathways [20].
RNA-Seq technique has been successfully used in stud-
ies various fishes in the past decade. In spotted scat spe-
cies (Scatophagus argus), several candidate genes
involved in reproduction and gonadal development were
obtained by RNA-Seq [21]. Studies on Takifugu rubripes
reported that sex-related genes play an important role at
early sex differentiation stage [22]. Gonadal transcrip-
tome profiling of triploid hybrid loaches (Misgurnus
anguillicaudatus) and their diploid and tetraploid par-
ents showed key genes implicated in low hybrid triploid
fertility [17]. A study on Thunnus maccoyii reported sex
and gonad-development-related genes in the gonads of
Southern bluefin tuna through RNA-Seq [23]. In
addition, RNA-Seq has been successfully used to analyze
sex determination and differentiation related genes in til-
apia [24]. In the present study, we successfully obtained
triploid fish (3nRR) by crossing female RCC and male
4nRR. The diploid (2nF1), triploid (3nF1) and tetraploid
(4nF1) hybrids were then generated by hybridization of

female 3nRR and male RCC. In this study, we explored
important biological traits and systematically compared
gonadal transcriptome of the triploid fish (3nRR) with
their parents. Further, the molecular mechanism of the
low fertility of the autotriploid fish was explored. The
findings of this study provide information on the bio-
logical characteristics of 3nRR and mechanisms associ-
ated with fertility regulation in triploid fish.

Results
Fertility of autotriploid Carassius auratus
3nRR were generated by crossing female RCC and male
4nRR during the breeding season (Figs. 1a, b and c, 2
and 3a, b and c; Table 1). Testes of RCC and 4nRR
(Fig. 4a, b) contained spermatogonia (SG), spermatocytes
(SC) and a large number of mature spermatid (ST),
whereas the mature sperm was not observed in 3nRR
(Fig. 4c). Ovaries of RCC, 4nRR and 3nRR contained
second, third and fourth phase oocytes (Fig. 4d, e, f).
These results indicated that all ovaries, and RCC and
4nRR testes were fertile whereas 3nRR testes were
sterile.
Eggs and water-like semen were collected during the

reproductive season from two years old males and fe-
males of 3nRR, respectively (Fig. 5). Ploidy levels of the
offspring resulting from a cross of female 3nRR and
male RCC (Fig. 1c, d, e, f, g) were determined by meas-
uring the chromosome number (Fig. 3d, e, f; Table 1).
These analyses showed that female 3nRR produced dif-
ferent sizes of eggs.

Transcriptome sequencing and sequence alignment
Optical density (OD) ratio A260/A280 and RNA integ-
rity numbers (RINs) of the RNA in 12 samples (Table 2)
were 2.1 and 8.0-8.8, respectively (Additional file 1).
These results indicate that all samples were free from
contamination and their quality met the requirements
for transcriptome sequencing.
RNA-seq from gonadal tissue samples of autotriploid

fish and their parents was performed by Illumina. RNA-
Seq results are presented in Tables 3 and 4. Number of
clean reads from the 12 RNA-seq libraries ranged from
39,624,312 to 50,588,484. All clean reads were then
aligned to the RCC genome sequences using HISAT2
software. Mapped genome reads ranged from 24,237,536
to 42,474,296, genome map rates ranged from 59.79 to
91.55 %, and unique match rates ranged from 57.84 to
85.93 %.

Identification of Differentially Expressed Transcripts
(DETs)
Analysis of F3nRR and FRCC showed that a total of 13,
467 DETs were downregulated whereas 6,688 DETs
were up-regulated (Fig. 6a). DETs between F3nRR and
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FRCC included forkhead box L2 (FOXL2), LIM homeo-
box 8 (LHX8), lysine acetyltransferase 8 (KAT8), BCL2
apoptosis regulator (BCL2), doublesex and mab-3 related
transcription factor 1 (DMRT1), ovarian serine protease
(OSP) and CCM2 scaffold protein (CCM2). Analysis of
M3nRR and M4nRR showed that a total of 1,886 DETs

were downregulated and 2,221 DETs were up-regulated
(Fig. 6b). DETs between M3nRR and M4nRR included
septin 12 (SEPT12), ATPase copper transporting beta
(ATP7B), CF transmembrane conductance regulator
(CFTR), cAMP responsive element modulator (CREM),
cytochrome P450 family 26 subfamily B member 1

Fig. 1 Formation of polyploid fish

Fig. 2 DNA-content flow-cytometry histograms of RCC (a), 4nRR (b) and 3nRR (c)
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(CYP26B1), EF-hand calcium binding domain 2
(EFCAB2) and inhibitor of kappa light polypeptide gene
enhancer in B-cells and kinase complex-associated pro-
tein (IKBKAP).

GO and KEGG enrichment analysis of DETs
GO enrichment analysis of the biological process, cellu-
lar component and molecular function categories yielded
242, 38 and 51 terms, respectively, for F3nRR vs. FRCC,
and 223, 28 and 29 for M3nRR vs. M4nRR group. (Add-
itional files 2 and 3). The most-enriched GO-terms for
F3nRR vs. FRCC group were “induction of programmed
cell death” in the biological process category, “neuron
projection” in the cellular component category, and
“channel activity” and “passive transmembrane trans-
porter activity” in the molecular function category. The
most-enriched GO-terms for M3nRR vs. M4nRR group
were “extracellular region part” in the cellular

component category; “kinase activity” and “transferase
activity, transferring phosphorus-containing groups” in
the molecular function category; and “response to os-
motic stress” in the biological process category (Fig. 7).
KEGG analysis of all DETs showed that 44 and 62 signal-

ing pathways were enriched in the F3nRR vs. FRCC group
and M3nRR vs. M4nRR group, respectively (Additional files
4 and 5). The top 20 most enriched KEGG pathways are
shown in Fig. 8. The five most-enriched pathways in the
F3nRR vs. FRCC group were “ion channels” (ko04040),
“cAMP signaling pathway” (ko04024), “focal adhesion”
(ko04510), “glycosaminoglycan binding proteins” (ko00536)
and “glycosyltransferases” (ko01003). Moreover, several
pathways implicated in female fertility of F3nRR were iden-
tified, including “MAPK signaling pathway - plant”
(ko04016), and “p53 signaling pathway” (ko04115). The five
most enriched pathways for the M3nRR vs. M4nRR group
were “Ion channels” (ko04040), “rap1 signaling pathway”
(ko04015), “ras signaling pathway” (ko04014), “alcoholism”
(ko05034) and “axon guidance” (ko04360). Notably, four of
the top 20 most-enriched pathways, “regulation of actin
cytoskeleton” (ko04810), “calcium signaling pathway”
(ko04020), “tight junction” (ko04530) and “cytokines and
growth factors” (ko04052), play important roles in cellular
processes such as differentiation, proliferation, migration
and apoptosis, implying that they are potentially involved in
male sterility of M3nRR.

Hub genes related to the fertility in 3nRR were identified
Eighty genes out of the DETs identified in the F3nRR vs.
FRCC group related to female fertility were identified by

Fig. 3 Chromosome spreads at metaphase in RCC, 4nRR, 3nRR, 2nF1, 3nF1 and 4nF1. a: The 100 chromosomes of RCC; b: The 200 chromosomes
of 4nRR; c: The 150 chromosomes of 3nRR; d: The 100 chromosomes of 2nF1; e: The 150 chromosomes of 3nF1; f: The 200 chromosomes of 4nF1;
bar = 5 μm

Table 1 Examination of chromosome number of RCC, 4nRR,
3nRR, 2nF1, 3nF1 and 4nF1
Fish
type

No.
of metaphase

Distribution of chromosome number

< 100 100 < 150 150 < 200 200

RCC 200 15 185

4nRR 200 26 174

3nRR 200 17 183

2nF1 200 18 182

3nF1 200 22 178

4nF1 200 34 166
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literature supported searching (Additional file 6). On the
other hand, 25 genes out of the DETs in the M3nRR vs.
M4nRR group are implicated in male sterility (Add-
itional file 7). To further identify hub genes associated
with 3nRR fertility, PPI of the fertility-related genes was
constructed using STRING tool and analysis was carried
out using Cytoscape software. After analysis of PPI net-
work of female fertility-related genes, 6 genes with the
interaction degrees more than 15 were screened as hub
genes (Fig. 9a, Additional file 8). Furthermore, PPI of
male sterility-related genes showed that 2 hub genes,
with degrees more than 5 showed strong interaction
with other node proteins (Fig. 9b, Additional file 9).

RT-qPCR verification
To verify RNA-Seq results, twenty-eight DETs were
chosen for validation by RT-qPCR. Among the 28 DETs,
6 DETs and 7 DETs were up-regulated in the F3nRR vs.

FRCC and M3nRR vs. M4nRR groups, respectively;
whereas 10 DETs and 5 DETs were down-regulated in
the F3nRR vs. FRCC and M3nRR vs. M4nRR groups, re-
spectively (Fig. 10). Expression profiles of the twenty
DEGs obtained by RT-qPCR and RNA-Seq were similar,
implying that RNA-Seq results were reliable.

Discussion
Triploid animals are usually sterile and cannot form trip-
loid populations. However, previous studies have been
reporting contradicting results. Xiao et al. [25] reported
that triploid Carassius auratus in Dongting water system
produces normal gametes. Hu et al. [26] reported that
female autotriploid hybrids (3nAUT) generated by cross-
ing females of Carassius auratus red var. with males of
autotetraploid fish produced mature eggs. However,
male 3nAUT showed abnormal gonadal development
and could not produce mature sperm. In the present

Fig. 4 Micrographs of the testes and ovaries of RCC, 3nRR and 4nRR. a: Micrographs of testis from RCC; b: Micrographs of testis from 4nRR; c:
Micrographs of testis from 3nRR; d: Micrographs of ovary from RCC; e: Micrographs of ovary from 4nRR; f: Micrographs of ovary from 3nRR; SG:
spermatogonia; SC: spermatocyte; ST: spermatid; II: stage II oocyte; III: stage III oocyte; IV: stage IV oocyte; Bars = 50 μm

Fig. 5 Spermatozoa and eggs of 3nRR. a: Abnormal spermatozoa produced by 3nRR males; b: Different sizes of eggs collected from 2-year-old
3nRR females
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study, 3nRR was generated by crossing female RCC and
male 4nRR. Three different ploidy offspring were then
obtained by hybridization of female 3nRR and male
RCC. The female 3nRR offspring were fertile, whereas
male 3nRR were sterile. However, only a few studies
have explored the molecular mechanisms modulating
fertility of the autotriploid of Carassius auratus. In this
study transcriptome analysis was used to explore the
molecular mechanisms associated with poor fertility in
3nRR. Eight fertility-related hub genes of 3nRR were
identified through GO and KEGG enrichment analyses,
and previous published literature.

Candidate hub genes related to male sterility of 3nRR
were identified
Hub genes identified in the M3nRR vs. M4nRR group
included several genes involved in male sterility, such as
the tumor protein p53 (TP53) and fibroblast growth fac-
tor 2 (FGF2).

TP53, also known as P53 is a transcriptional regula-
tor and tumor suppressor implicated in spermatogen-
esis [27]. In vertebrates, partial or complete
impairment of P53 expression causes disordered mei-
otic divisions, which in turn causes spermatogenesis
defects [28, 29]. P53 mRNA and protein levels are
downregulated in the testis of P53 promoter-
chloramphenicol acetyltransferase (CAT)-harboring
mice, indicating its important role in development of
spermatocytes [30]. In addition, TP53 codon 72 poly-
morphism in mice is involved in meiosis, implying
that it plays a critical role in spermatogenesis [31]. In
human, P53 gene polymorphism is higher in infertile
men compared with fertile men, implying that it may
affect germ cell apoptosis and increase risk of male
infertility [29, 32]. In the current study, analysis of
expression levels of the TP53 gene showed signifi-
cantly different expression levels between M3nRR and
M4nRR. This finding implies that TP53 may disrupt
meiosis during spermatogenesis in the male 3nRR fish
causing sterility.
Fibroblast growth factor 2 (FGF2) plays essential

functions in regulation of spermatogenesis and sperm
physiology [33]. A study using a human model re-
ported presence of FGF2 and FGFRs in testis and
sperm, which are related with human spermatogenesis
and sperm motility [34]. Furthermore, incubation of
human sperm with recombinant FGF2 (rFGF2) causes
an increase in number of motile cells, implying that
the gene is involved in sperm motility [35]. In mouse,
knock out of FGF2 induces impaired sperm produc-
tion and is associated with alterations in sperm
morphology and function [36]. In this study, FGF2
was significantly upregulated in M3nRR vs. 4nRR.
High expression levels of the gene can cause abnor-
mal shaping of the normal sperm, which resulted in
male 3nRR sterility.

Table 2 Sample information

Sample No. Sample type

FRCC-1 RCC-1 (female parent)

FRCC-2 RCC-2 (female parent)

FRCC-3 RCC-3 (female parent)

M4nRR-1 4nRR-1 (male parent)

M4nRR-2 4nRR-2 (male parent)

M4nRR-3 4nRR-3 (male parent)

F3nRR-1 F1 (male) (RCC×4nRR)-1

F3nRR-2 F1 (male) (RCC×4nRR)-2

F3nRR-3 F1 (male) (RCC×4nRR)-3

M3nRR-1 F1 (female) (RCC×4nRR)-1

M3nRR-2 F1 (female) (RCC×4nRR)-2

M3nRR-3 F1 (female) (RCC×4nRR)-3

Table 3 Summary of the RNA-Seq data collected from FRCC, M4nRR, F3nRR and M3nRR

Sample name Raw reads Clean reads Clean bases Q20 (%) Q30 (%) GC content (%)

FRCC-1 42,334,070 42,252,766 6.31G 97.83 93.94 48.99

FRCC-2 39,685,218 39,624,312 5.92G 97.81 93.88 48.20

FRCC-3 46,465,082 46,395,874 6.94G 97.79 93.75 48.18

M4nRR-1 42,549,848 42,506,792 6.34G 97.63 93.34 45.99

M4nRR-2 42,757,282 42,709,522 6.36G 97.65 93.46 46.84

M4nRR-3 40,576,492 40,538,356 6.05G 97.84 93.80 45.67

F3nRR-1` 40,938,734 40,848,106 6.07G 97.17 92.48 46.81

F3nRR-2 50,703,558 50,588,484 7.54G 97.43 93.03 47.14

F3nRR-3 48,905,962 48,796,080 7.28G 97.48 93.14 47.23

M3nRR-1 45,040,604 44,995,054 6.70G 97.72 93.57 46.43

M3nRR-2 44,702,364 44,659,854 6.67G 98.09 94.25 45.66

M3nRR-3 45,015,326 44,976,210 6.72G 97.75 93.57 45.70
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Candidate hub genes related to female fertility of 3nRR
were identified
Six hub genes associated with female fertility were iden-
tified in the F3nRR vs. F4nRR group including MYC
proto-oncogene, bHLH transcription factor (MYC),
SRY-box transcription factor 2 (SOX2), bone morpho-
genetic protein 4 (BMP4), GATA binding protein 4
(GATA4), phosphatase and tensin homolog (PTEN) and
bone morphogenetic protein 2 (BMP2).
MYC gene encodes the MYC transcription factor

which is involved in cell proliferation and gametogenesis
[37]. In Xenopus, C-MYC was detected in oocytes, indi-
cating that it plays a role in oogenesis [38]. In Drosoph-
ila, MYC was involved in distribution of CTPsyn in
follicle cells, implying that it plays a role in synthesizing
nutrients for the developing oocytes [39]. In addition, a
previous study reported that MYC plays an important
role in regulation of mitochondrial biogenesis in Dros-
ophila ovary, indicating that the gene is involved in oo-
cyte development [40]. In Larimichthys crocea, Lc-cMYC
had different expression patterns in oocytes at various

stages of development, implying that it plays an essential
role in oogenesis [41]. In the current study, 3nRR ovary
showed low expression level of MYC which may inhib-
ited formation of oogenesis defects during triploidiza-
tion, resulting in production mature eggs.
SOX is an ancient gene family involved in oogenesis

[42]. Sox genes have been explored in many organisms
and can be classified into ten subgroups (A-J) [43]. In
Agasicles hygrophila, AhDichaete and AhSox3 expression
levels are significantly high in ovary, indicating that it
plays a vital regulatory role in during ovarian develop-
ment and oogenesis [44]. In Misgurnus anguillicaudatus,
MaSOX3 is abundant in primary oocytes and previtello-
genic oocyte cells, indicating that MaSox3 gene is in-
volved in ovarian development [45]. In Paramisgurnus
dabryanus, SOX4 was detected in the ovary, showing
that it plays an important role during ovarian develop-
ment [46]. In mouse, expression of SOX2 is required for
establishment and maintenance of the oocyte cell [47].
In our study, SOX2 was identified in F3nRR vs. FRCC,
with lower expression level in F3nRR gonad compared

Table 4 Summary of clean reads mapped from FRCC, M4nRR, F3nRR and M3nRR to the reference genome

Sample name Total reads Total mapped Multiple mapped Uniquely mapped

FRCC-1 42,252,766 38,590,536 (91.33 %) 2,470,549 (5.85 %) 36,119,987 (85.48 %)

FRCC-2 39,624,312 36,222,309 (91.41 %) 2,283,305 (5.76 %) 33,939,004 (85.65 %)

FRCC-3 46,395,874 42,474,296 (91.55 %) 2,608,537 (5.62 %) 39,865,759 (85.93 %)

M4nRR-1 42,506,792 25,481,741 (59.95 %) 791,414 (1.86 %) 24,690,327 (58.09 %)

M4nRR-2 42,709,522 26,274,265 (61.52 %) 1,570,067 (3.68 %) 24,704,198 (57.84 %)

M4nRR-3 40,538,356 24,237,536 (59.79 %) 749,604 (1.85 %) 23,487,932 (57.94 %)

F3nRR-1 40,848,106 28,790,170 (70.48 %) 1,218,302 (2.98 %) 27,571,868 (67.50 %)

F3nRR-2 50,588,484 35,839,842 (70.85 %) 1,526,075 (3.02 %) 34,313,767 (67.83 %)

F3nRR-3 48,796,080 34,635,763 (70.98 %) 1,489,678 (3.05 %) 33,146,085 (67.93 %)

M3nRR-1 44,995,054 31,933,903 (70.97 %) 1,010,710 (2.25 %) 30,923,193 (68.72 %)

M3nRR-2 44,659,854 31,782,067 (71.16 %) 982,486 (2.20 %) 30,799,581 (68.96 %)

M3nRR-3 44,976,210 31,860,677 (70.84 %) 1,043,971 (2.32 %) 30,816,706 (68.52 %)

Fig. 6 Volcano plot for transcript differential expression. a: F3nRR vs. FRCC; b: M3nRR vs. M4nRR. Transcripts with FDR < 0.05 and ratio of FPKMs of
the two samples > 2 were considered to be differentially expressed transcripts. The red region shows significantly up-regulated transcripts,
whereas the green region shows down-regulated transcripts
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with the expression level in FRCC gonad. This finding
shows that SOX2 may be an important factor in normal
ovarian development of F3nRR.
Bone morphogenetic proteins (BMPs) are belonging to

the transforming growth factor-β superfamily of pro-
teins, and they appear to be highly conserved [48]. A
previous study reports that BMPs play a role in regula-
tion of ovarian follicular development [49]. BMP1,
BMP6 and BMP15 are implicated in ovarian develop-
ment [50–52]. In Xenopus laevis, BMP2 gene is highly
expressed during oogenesis, implying that it is an im-
portant factor in ovarian development [53]. In mouse,
BMP4 regulates the number of oocytes, suggesting its
role in the process of oogenesis [54]. Roles of BMP2 and
BMP4 as important factors in survival and development
of bovine secondary follicles were recently reported [55].
In this study, BMP2 and BMP4 genes were differentially
expressed between F3nRR and FRCC, indicating that
they may be involved in ovarian development.
GATA4, a member of the GATA-binding family, is

highly expressed in ovarian granulosa cells [56, 57]. A
previous study reported that the gene is involved in
regulation of ovarian development [58]. GATA4 and
GATA6 knockout female mice exhibited infertility due
to disrupted formation of ovaries [59]. GATA4 deletion
resulted in a sterile female mice phenotype attributed to
drastic reduction in number of developing follicles [60].

The mRNA for GATA4 has been reported in human
ovary implying that GATA4 plays a role in ovarian folli-
culogenesis [57]. GATA4 was identified through tran-
scriptome analysis in this study. GATA4 was
differentially expressed in F3nRR vs. FRCC, indicating
that plays important roles in ovarian development of
3nRR.
Phosphatase and tensin homolog (PTEN) protein has

phosphatase activity and belongs to protein-tyrosine
phosphatase superfamily [61]. PTEN is a negative regula-
tor of PI3K-Akt signaling pathway which is involved in
growth of eggs [62]. Deletion of PTEN from oocytes af-
fects mouse fertility by interrupting oocyte growth [63].
PTEN signaling pathway associated with ovarian follicle
development has been reported in human [64]. In Cras-
sostrea gigas, PTEN is involved in insulin pathway in go-
nads and plays a critical role in reproduction [65]. In
Drosophila, loss of PTEN is related to IIS/mTORC1 sig-
nalling, which is important for oogenesis [66]. In the
present study, F3nRR showed significantly low expres-
sion levels of PTEN, which may have caused F3nRR nor-
mal fertility through regulation of oogenesis.

Conclusions
The autotriploid Carassius auratus (3nRR, 3n = 150) is
generated from Carassius auratus red var. (RCC, 2n =
100) (♀) and autotetraploid Carassius auratus (4nRR,

Fig. 7 Gene Ontology (GO) functional classification of differentially expressed transcripts (DETs). a: F3nRR vs. FRCC; b: M3nRR vs. M4nRR. The three
terms are presented on the x-axis shows and the proportion of DETs corresponding to each subcategory is presented on the y-axis

Fig. 8 Statistics of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the functional significance of DETs. a:
F3nRR vs. FRCC; b: M3nRR vs. M4nRR. The abscissa represents P value, which decreases with increase in significance in enrichment level of
differentially expressed transcripts in the pathway. The ordinate represents log10 (Q value), which increases with increase in significance of
differentially expressed transcripts in the pathway
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4n = 200) (♂), of which the female 3nRR can produce
mature gametes, whereas the male 3nRR cannot. In
addition, we produced diploid (2nF1, 2n = 100), triploid
(3nF1, 3n = 150) and tetraploid (4nF1, 4n = 200) hybrids
in the F1 generation by crossing females of 3nRR with
males of RCC, which further indicated that female 3nRR
were fertile. Gonadal transcriptome reveals 6 hub genes
(MYC, SOX2, BMP4, GATA4, PTEN and BMP2) were
involved in the female fertility of the female 3nRR, and 2
hub genes (TP53 and FGF2) were involved in the male
sterility of the male 3nRR. The obtained data reveals
novel candidate genes for the fertility in the autotriploid
fish and also extends an understanding of the molecular
aspects of fertility in triploid fish.

Methods
Animals and crosses
One year old RCC and one year old 4nRR (F11) were fed
in the State Key Laboratory of Developmental Biology of
Freshwater Fish, Hunan Normal University, China. Hy-
brids (3nRR) of RCC (♀) × 4nRR (♂) were generated in
May 2018. All fish were maintained in open pools
(0.067 ha) with suitable pH (7.0-8.5), water temperature
(22–24℃), dissolved oxygen content (5.0–8.0 mg/L) and
adequate forage. All dissections were performed under
MS-222 anaesthesia (100 mg/L; Sigma-Aldrich).

Gonadal histologic analysis
Ploidy levels of the fish (RCC, 4nRR and 3nRR) were es-
timated using a flow cytometer (Gallios Flow Cytometer,
Beckman Coulter). Blood was collected from the caudal
vein using heparinized syringes. Samples were then re-
suspended in 4,6-Diamidino-2-Phenylindole solution
(Sigma-Aldrich) for 10 min. DNA content was compared
with that of RCC per sample. Gonadal tissues of two
years old female RCC, male 4nRR and 3nRR were fixed

in Bonn’s liquid and then dehydrated using graded series
of alcohol, cleared with xylene, embedded in paraffin
wax and cut into 5–8 μm sections. The sections were
placed on slides, stained with hematoxylin and eosin,
and viewed under a light microscope.

Gamete phenotypes and egg ploidy detection
The water-like semen and mature eggs of two years old
3nRR were sampled for morphological examination. The
female 3nRR produced different sized eggs. To deter-
mine the egg ploidy, mature eggs were used in vitro
fertilization of the RCC haploid sperm and then viable
offspring (2nF1, 3nF1 and 4nF1) were generated. Ploidy
of these offspring was detected by chromosome counts.

Preparation of chromosome spreads
For ploidy level analysis, chromosome counts were car-
ried out using kidney tissues from 10 individuals each of
RCC, 4nRR, 3nRR, 2nF1, 3nF1 and 4nF1 at eight months
of age following a previously described method [67]. 200
metaphase chromosome spreads (20 spreads per sample)
were analyzed for each type of fish. Each preparation
was examined under 3330× magnification with an oil
immersion lens.

Sample collection and preparation for transcriptomic
sequencing
A total of 3 females RCC (FRCC), 3 males 4nRR
(M4nRR), 3 males 3nRR (M3nRR) and 3 females 3nRR
(F3nRR) were acquired at 24 months. Fish were anesthe-
tized before surgical removal of tissues. Gonadal tissues
were harvested from FRCC, M4nRR, F3nRR and M3nRR
after euthanasia.

Fig. 9 Protein-protein interaction network of fertility-related genes. a: F3nRR vs. FRCC; b: M3nRR vs. M4nRR. Genes with higher degree value are
presented in deep red color
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Fig. 10 qPCR analysis of selected DETs. a: F3nRR vs. FRCC; b: M3nRR vs. M4nRR. Data represent the means ± SD, n = 3 independent experiments.
*p < 0.01 versus control
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RNA extraction and sequencing
Total RNA was extracted from gonads of RCC, 4nRR
and 3nRR using TRIzol reagent (Takara, Beijing, China)
according to the instructions. RNA integrity (RNA integ-
rity score ≥ 7.0) was checked on the bioanalyzer 2100
system (Agilent, Palo Alto, CA) and RNA quantity was
measured using NanoDrop 2000 (Thermo, Waltham,
MA, USA). A total of 12 libraries from FRCC, M4nRR,
F3nRR and M3nRR groups were sequenced. In sum-
mary, mRNA was purified and broken into short frag-
ments. Then, reverse transcription, cDNA synthesis and
cluster generation were performed. RNA-Seq libraries
were then sequenced on Illumina Hiseq2500 platform.
The sequenced data are publicly available at the NCBI
(PRJNA694292).

Differential expressed transcripts (DETs) and profiling of
potential fertility-related genes
After sequencing, clean reads were acquired by remov-
ing adapters and low-quality reads using fastp software
(Version 0.20.0). The clean reads quality was assessed
with FastQC software (Version 0.11.9). The clean reads
of the libraries were aligned to the published RCC refer-
ence genome (https://bigd.big.ac.cn/search?dbId=
gwh&q=GWHAAIA00000000) using HISAT2 tool (Ver-
sion 2.1.0). To calculate gene expression level, we used
fragments per kilobase per million mapped fragments
(FPKM) method. Differentially expressed transcripts
(DETs) analysis of F3nRR vs. FRCC, and M3nRR vs.
M4nRR was performed using DEGSeq2 R package (Ver-
sion 1.28.1). Transcripts having a fold change (FC) > 2
and a false discovery rate (FDR) < 0.05 were considered
as DETs. To further explore these DETs, Gene ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis were performed using clus-
terProfiler (Version 3.6.0) with p < 0.05. Moreover,
fertility-related DETs were screened following GO,
KEGG enrichment analyses and published literature.
STRING database (https://string-db.org/) to construct
protein-protein interaction (PPI) networks to explore
protein relationships among the fertility-related DETs.
Hub genes were obtained based on the ranking order of
connectivity degree by Cytoscape software [68].

Quantitative real-time PCR verification
Ten significantly DETs (five up-regulated DETs and five
down-regulated DETs) and eight important genes in this
study were chosen for quantitative real-time (qRT) PCR
to test the reliability of the F3nRR vs. FRCC and M3nRR
vs. M4nRR transcriptome sequencing results. Prime-
Script™ RT reagent kit (Takara, Dalian, China) was used
to perform cDNA synthesis following the manufacturer’s
instructions. Primer sequences for β-actin (the internal
control gene) and these DETs are listed in Additional

file 10. The 10-µl-volume qRT-PCR reaction mixture
consisted of 5 µl SYBR Green qPCR Master Mix, 0.5 µl
of 20 µM of each primer, 1 µl of cDNA (1:10 dilution)
and 3 µL of nuclease-free water. qRT-PCR thermal cycle
used was as follows: 95 °C for 2 min, 40 cycles of 95 °C
for 15 s and annealing at 60 °C for 30 s. Three technical
replicates were used for each biological sample in the
qRT-PCR. Relative mRNA expression level was calcu-
lated by using the 2−ΔΔCt method. Data were analyzed
statistically using SPSS (v22.0) software (SPSS Inc., Chi-
cago, IL, USA). Statistical significance was determined
using Student’s t-test analysis.
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